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Unit Abbreviations and Conversions

Volume
1 gallon (gal) (U.S. gallon) = 3.8liters (L)
1bushel (bu) = 35liters (L)
1 barrel (bbl) = 42 gallons (gal)

1 acre-foot (acre-ft) 325,851 gallons (gal)

Area

1acre (ac) = 0.4 hectares (ha)

1 hectare (ha) 2.5 acres (ac)

1 square kilometer (km2) = 247 acres (ac)
Weight
1pound (Ib) = 0.45 kilograms (kg)

)
1ton (U.S.ton) = 907 kilograms (kg)
1gram(g) = 0.035ounces (0z)
1 kilogram (kg) = 2.2 pounds (Ib)
) = 2,200 pounds (Ib)
)

1 metric ton or tonne (MT (
= 1,102,000 tons (t)

1 teragram (Tg

Length
1 mile (mi) = 1.6 kilometers (km)
1inch (in) = 2.5 centimeters (cm)
1 kilometer (km) = 0.6 miles (mi)
Sl Prefixes

peta =105 centi =102
tera = 10" milli = 103
giga =10° micro = 106
mega = 108 nano = 109
kilo =103
hecto = 102



Executive Summary

This is the Third Triennial Report to Congress on Biofuels (RtC3) as required under Section 204
of the Energy Independence and Security Act of 2007 (EISA). The purpose of the report is to examine the
effects of the Renewable Fuel Standard (RFS) Program on the environment, including the impacts to date
and likely future impacts to the nation’s air, land, and water resources. The statute requires a focus on
environmental and resource conservation issues, including effects on air quality, soil quality and
conservation, water quality and availability, terrestrial ecosystems, aquatic ecosystems, and wetlands, and
consideration of invasive or noxious species. This report emphasizes domestic effects, but also examines
effects overseas. The RtC3 considers all 17 types of biofuels produced in or imported to the U.S. from
2005-2020 and focuses on the four biofuels that dominated U.S. production and consumption over this
period: (1) ethanol from U.S. corn, (2) biodiesel from U.S. soybean, (3) biodiesel from U.S. fats, oils, and
greases (FOGs), and (4) imported ethanol from Brazilian sugarcane. Although these four biofuels are the
focus of the RtC3, other biofuels (cellulosic biofuels, algae, palm oil, and others) are also discussed where
appropriate. While EPA acknowledges the importance of greenhouse gases (GHGs) in assessing the
environmental impacts of biofuels and the RFS, consistent with earlier reports, the RtC3 does not assess
them here; EPA evaluates GHGs while administering the RFS Program (Sections 201 and 202 of EISA").

In the First and Second Triennial Reports to Congress on Biofuels (RtC1 and RtC2, respectively),
the Agency could not separate the effects of the RFS Program from the effects of other factors (e.g.,
market or other policy effects). Many studies assessed the impacts from biofuels on the environment, but
very few separated the effects of the RFS Program from other factors that also affect biofuel production
and consumption in the United States. As attribution was identified as a major knowledge gap in previous
reports, this report includes a new emphasis on attribution, referred to in this report as an “attribution
analysis.”

This report examines the many factors that simultaneously influenced the production and use of
domestic corn ethanol in the United States to assess attribution. These factors include the need for fuel
oxygenates in gasoline during the phaseout of methyl-tert-butyl-ether (MTBE) from 2003-2006, the
Volumetric Ethanol Excise Tax Credit (VEETC) from 2004-2010, high oil prices from 2005-2015, and
dozens of individual state biofuel programs and MTBE bans over this period. The RFS Program has

! Energy Independence and Security Act of 2007, Pub. L. No. 110-140, § 202, 121 Stat. 1492, 1521-28 (2007)
(codified as amended at 42. U.S.C. § 7545(0)). Detailed assessment of the GHG balance of corn ethanol and other
biofuels are not in scope of this report series. See Chapter 2 (Box 2.2) for an overview and see Federal Registry (FR)
FRL-9307-01-OAR (https://www.epa.gov/renewable-fuel-standard-program/workshop-biofuel-greenhouse-gas-
modeling) and EPA’s 2023 lifecycle analysis Model Comparison Technical Document
(https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P1017P9B.pdf).
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changed as well over this period, from the first version (RFS1) created under the Energy Policy Act of
2005, to a more robust version (RFS2) created under EISA in 2007. Because of these complexities,
assessing the effect from the RFS Program as required under EISA, as opposed to the biofuels industry
more generally, is challenging. Furthermore, the policy and the market are dynamic, so that the effect of
the policy changes over time. Despite these challenges, by assembling multiple lines of evidence from
empirical records and simulation modeling from the peer-reviewed literature, this report finds that corn
ethanol production and consumption in the United States attributable to the RFS Program varies through
time and may include no attributable effect. This finding is expressed throughout the report as a range in
billions of gallons per year and includes zero in the range. This report estimates that from 2006 to 2011
the RFS Program—in isolation—accounted for 0—1.0 billion gallons per year of ethanol, mostly by
establishing market certainty and encouraging capital investment from the RFS2, and to a lesser extent by
stabilizing demand during the Great Recession of 2008—2009. From 2012 to 2018, the RFS Program
accounted for an estimated 0—2.1 billion gallons per year, a wider range than from the previous period.
This suggests the RFS Program is responsible for 0-9% of cumulative corn ethanol production and
consumption in the United States over the historical period assessed (2005-2018).

Many uncertainties are associated with this estimate of the volume of ethanol attributable to the
RFS Program. The growth of corn ethanol production in the United States over the years coincided with
the MTBE phaseout by 2006, expiration of VEETC at the end of 2010, and lower oil prices after 2015.
Disentangling the effect of the RFS Program, as required under EISA Section 204, is difficult given the
many cooccurring factors that affect biofuels in the United States. As a mandate, the RFS Program could
have driven most of the increase in ethanol production and consumption in the United States if it were the
only factor affecting ethanol. However, as events played out, non-RFS factors that are known to also
influence the market were favorable and appear to explain much of the increase in ethanol production and
consumption in the United States. There are many unquantified factors not included in the attribution
analysis contained in this report, including the effect of the existence of the RFS Program in influencing
state biofuel programs to be enacted and the costs or willingness of refiners to switch back to producing
finished gasoline if ethanol were no longer economical, to name a few. Notwithstanding various
uncertainties, these ranges are estimated based on currently available information for the historical effect
of the RFS Program on corn ethanol production and consumption in the United States.

For biodiesel and renewable diesel, the attributional effect of the RFS Program is estimated to be
different. Using similar lines of evidence as for corn ethanol, where available, this report concludes that
the RFS Program has driven a significant portion of the use of these biofuels from 2010-2020. However,
there is insufficient information available at present to confidently quantify the attributional effect

annually of the RFS Program for these years. This is mostly due to a lack of data and peer-reviewed
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studies that focus on biodiesel that control for key factors important in the biodiesel market such as the
Biodiesel Tax Credit (BTC) and state incentive programs. Together, the RFS Program and the BTC are
likely responsible for roughly 70—-100% of soybean biodiesel and renewable diesel production and
consumption in the United States.

Using the estimated range in the volume of corn ethanol attributable to the RFS Program, this
report estimates the RFS Program’s effect on corn ethanol production and consumption resulted in
0—1.9 million acres of cropland expansion from direct and indirect effects domestically between 2005 and
2016, and 0-3.5 million acres of corn expansion, with many years of no effect. The 1.9 million acres of
cropland corresponds with less than 1% of all cropland in 2017, but also represents approximately 19% of
the estimated cropland expansion between 2008 and 2016. The maximum of 3.5 million acres of corn
corresponds with less than 5% of all planted corn in 2017 but represents an almost 35% increase in corn
acreage between 2008 and 2016. Thus, though these upper range estimates are still small relative to the
total acreage of cropland or corn, potential effects from the RFS Program may be locally significant
where any land use changes may have occurred. Cropland expansion often leads to increases in soil
erosion, pesticide and fertilizer applications, and losses of seminatural habitat. These upper range
estimates of the effects on total cropland due to the RFS Program would have had modest negative
impacts on many of the environmental effects reviewed in this report, as concluded but not quantified in
the RtC1 and RtC2. However, specific areas where environmental effects may have occurred cannot be
quantified with confidence due to the vast quantity of potential cropland in the United States and the
multitude of factors that contribute to an individual farmer’s decision whether to bring additional land
into crop production. The ranges analyzed represent an updated estimate based on the currently available
science and literature and may be revised as further research is conducted.

Despite the finding of potentially modest annual effects of the RFS Program nationally for the
environmental impacts assessed, these may have important cumulative impacts on the environment. For
example, by 2004—the year before enactment of the Energy Policy Act—over half of the historical
wetlands in the lower 48 states had already been lost (>100 million acres lost), with several Midwestern
states losing more than 80% of their historical wetlands. Additional losses of up to 275,000 acres of
wetlands are estimated to have occurred between 2008 and 2016 from all causes, only a portion of which
are attributable to the RFS Program. This acreage is small compared with historical losses but could have
cumulative environmental effects or landscape level effects in some areas. Similarly, according to
national surveys conducted by the EPA, 67% of the wadeable streams in the United States were already in
poor or fair biological condition as of 2004. Thus, even though the RFS Program may not result in new
exceedances of numerical nutrient thresholds, it does represent additional strain on already strained

ecosystems. Moreover, the effects of the RFS Program likely fall disproportionally in certain areas of the
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United States, such as in rural areas with greater amounts of grassland habitat lost to corn or soybeans.
Some of these areas may contain locally endemic species and other important local environmental
resources, which may appear underrepresented in a large national-scale assessment. Thus, even modest
national effects do not preclude potentially larger effects at the local level. At this time, however, EPA
cannot identify with any specificity and certainty which parcels of land at the local level may have been
affected by the RFS Program.

International effects associated with imported biofuels, and market mediated effects on crop and
biofuel production in other countries, are even more uncertain than national effects. These effects are
highly uncertain due to the large range of estimates among studies, poorly evaluated differences among
models, and a lack of adequate representation in these models of biofuel policies in countries other than
the United States. However, effects from imported biofuel are likely modest given the relatively small
quantity of imports relative to domestic biofuel production since the RFS Program went into effect. It
does not necessarily follow that overall international effects of the RFS Program have been small, as
research has shown the indirect effects of increased biofuel production on feedstock commodity trade
flows could be substantial.

Domestically, some of the agricultural practices that can mitigate environmental impacts are
becoming widely adopted (e.g., conservation tillage), while others are not (e.g., cover crops). While some
of these adoptions may explain regional improvements in some environmental conditions, they do not yet
appear to be large enough to improve many of the environmental effects reviewed in this report. Greater
adoption of these conservation practices could help offset potential effects from the RFS Program or
broader effects from agriculture.

This report reinforces the broad conclusions from the RtC1 and RtC2 on biofuels in general and
further evaluates attribution of those effects to the RFS Program more specifically. Although the overall
environmental effects attributable to the RFS Program to date are likely modest but negative, biofuels
continue to have the potential for both positive and negative environmental effects, depending on the
many factors discussed in this report.

For the future period, EPA included the estimated effects of the RFS Program for 20232025 as a
part of the Final Set Rule 88 Federal Register 44468 (July 12, 2023). EPA projected an increase of
approximately 3.9 billion ethanol equivalent gallons of renewable fuel use in the United States by 2025
due to the RFS Program. This overall increase is estimated to be primarily from compressed/liquified
natural gas (CNG/LNG) derived from biogas (+932 million gallons), biodiesel and renewable diesel from
soybean oil (+1,484 million gallons) and canola oil (+614 million gallons), and ethanol from corn
(+787 million gallons). EPA expects smaller effects from the RFS Program on other biofuels (e.g., +110

million gallons of renewable diesel from FOGs). For the crop-based biofuels with potential effects on

ES-4 Executive Summary



cropland, EPA estimated the RFS Program could potentially lead to an increase of as much as

2.65 million acres of cropland by 2025. These estimated increases in the future are on top of historical
effects. As with the historical land use changes, EPA cannot at present identify with any specificity and
certainty which parcels of land at the local level may be affected by the RFS Program. Several factors
contribute to uncertainty in these estimates of the likely future, including ongoing recovery from the
global COVID-19 pandemic, uncertainty in the penetration of E15 in the marketplace, competition with
other technologies such as electric vehicles, and continued but slow growth of cellulosic ethanol
production from agricultural or marginal lands. As policy and market conditions change, so may the
factors to consider and the estimate of the likely future effects of the RFS Program. Further details can be
found in the associated docket (EPA-HQ-OAR-2021-0427).

Detailed recommendations are discussed in this report and primarily include research
recommendations to fill key knowledge gaps to support policy decision making. These include, but are
not limited to, research to improve estimates of the attributional effect from the RFS Program on all types
of biofuels that include realistic industry and economic detail, methods to link these attributional effects
to specific land areas domestically and internationally, improved remote sensing and local data to enable
verification of these estimated changes on the land, and more research overall on the environmental
effects from newly emerging biofuels. Furthermore, conservation practices exist to offset many of the
environmental effects from the cultivation of conventional biofuel feedstocks (e.g., corn, soybean) and
agricultural effects more generally; and, while some of these have been widely adopted (e.g., conservation
tillage), some have not (e.g., cover crops). A sustained effort to deploy these practices across a wider area,
especially in areas of recent cropland expansion may be needed to offset the potential negative effects

from the RFS Program specifically and biofuels more generally.
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Integrated Synthesis

This is the Third Triennial Report to Congress on Biofuels (RtC3) as required under Section 204
of the Energy Independence and Security Act of 2007 (EISA"). The purpose of this report and its
predecessor reports (i.e., the First and Second Triennial Reports to Congress on Biofuels, RtC1 and RtC2,
respectively) is to assess the “impacts to date and likely future impacts” of the Renewable Fuel Standard
(RFS) Program on a range of environmental and resource conservation issues. Section 204 states:

“(a) In General. Not later than 3 years after the enactment of this section and every 3 years
thereafter, the Administrator of the Environmental Protection Agency, in consultation with the
Secretary of Agriculture and the Secretary of Energy, shall assess and report to Congress on
the impacts to date and likely future impacts of the requirements of Section 211(o) of the Clean
Air Act on the following:
1. Environmental issues, including air quality, effects on hypoxia, pesticides, sediment, nutrient
and pathogen levels in waters, acreage and function of waters, and soil environmental quality.
2. Resource conservation issues, including soil conservation, water availability, and ecosystem
health and biodiversity, including impacts on forests, grasslands, and wetlands.
3. The growth and use of cultivated invasive or noxious plants and their impacts on the
environment and agriculture.
In advance of preparing the report required by this subsection, the Administrator may seek the
views of the National Academy of Sciences or another appropriate independent research
institute. The report shall include the annual volume of imported renewable fuels and
feedstocks for renewable fuels, and the environmental impacts outside the United States of
producing such fuels and feedstocks. The report required by this subsection shall include
recommendations for actions to address any adverse impacts found.”
What follows is the “Report at-a-Glance,” which provides a high-level bulleted overview of the entire
RtC3. The Integrated Synthesis then describes the background on the scope and content of the RtC3 and
compares the overall conclusions from the RtC3 with the RtC2. Subsequently, the Integrated Synthesis
presents the specific conclusions from individual chapters on the impacts to date and likely future impacts
from the RFS Program.” The Integrated Synthesis then closes with discussion of uncertainties and

limitations, and future recommendations.

! Energy Independence and Security Act of 2007, Pub. L. No. 110-140, 121 Stat. 1492, preamble (2007).
2 In the RtC3, the term “impacts” is used to generally mean negative effects, while “effects” are more general and
may be positive or negative.
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Report At-a-Glance

Main Conclusions

The impacts to date from the RFS Program are separate from, but overlap with, the effects of
biofuels as an industry more generally. The estimated impacts to date from the RFS Program
varied through time and for different biofuels as conditions in the market and co-occurring
policies at the state and federal levels changed. The estimated impacts are expressed throughout
the report as a range in billions of gallons per year and may include zero in the range.

The impacts the RFS Program may have had in the past do not dictate the potential future effects

of the Program, which can change as feedstocks, production, and conversion processes change.

Background

The RtC3 assesses all 17 types of biofuels that were produced in or imported to the United States
from 2005 through 2020. Emphasis is placed on the environmental and resource conservation
issues specified in Section 204 from the production and use of biofuels that dominated U.S.
production and consumption over this interval. These include: (1) domestic corn ethanol,

(2) domestic soybean biodiesel, (3) domestic biodiesel from fats, oils, and greases (FOGs), and
(4) imported ethanol from Brazilian sugarcane [Chapter 2, sections 2.3 and 2.5, Table 2.1, 2.2].
Although the focus of the RtC3 is on these four biofuels, other biofuels and their effects are
discussed where appropriate [Chapters 8—15, sections 8.6, 9.6, etc., and Chapter 16].

The period of rapid growth in the domestic corn ethanol industry was from 2002 to 2012. The
RFS Program has changed over this period. The two versions of the RFS Program are commonly
called the “RFS1” (in effect 2006—-2008) and “RFS2” (in full effect since 2010). Nearly 40% of
the increase in ethanol consumption had already occurred by the first full year of the RFS1 in
2006, and over 90% of the increase in consumption had already occurred by the first full year of
the RFS2 in 2010 [Chapter 6, section 6.2].

After decades of decline in cultivated cropland since at least the 1980s, increases in cultivated
cropland by roughly 6—10 million acres have been recorded in multiple federal datasets, using a
variety of methodologies, following the 2007 to 2012 period. This increase in cultivated cropland
was largely driven by a net 26.5 million-acre increase in corn and soy with small grains and hay
in rotation decreasing by 16.5 million acres. More than half of the corn and soybean acreage
increase has come from other cultivated cropland (56%), while the rest has come from smaller
proportions of pasture (13%), noncultivated cropland (20%), and the Conservation Reserve

Program (CRP, 11%). Many of these changes are taking place throughout the Midwest, with
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hotspots in northern Missouri, eastern Nebraska, North and South Dakota, Kansas, and parts of
Wisconsin [Chapter 5, section 5.3].

While EPA acknowledges the importance of greenhouse gases (GHGs) in assessing the
environmental impacts of biofuels and the RFS, consistent with earlier reports, the RtC3 does not
assess them here; EPA evaluates GHGs while administering the RFS Program (Sections 201 and
202 of EISA®).

Attribution

Data allows for quantitative attribution of the potential impacts of the RFS Program on corn
ethanol production and consumption. Information from economic models, observed prices for
compliance credits (i.e., Renewable Identification Numbers [RINs]), and other sources suggest
that from 2006 to 2011 the RFS Program—in isolation—accounted for 0—1 billion gallons per
year of the U.S. corn ethanol produced and consumed. The estimated effect in these early years
may have been primarily driven by encouraging market growth and capital investment and to a
lesser extent by stabilizing demand during the Great Recession of 2008—2009. Other factors
together likely played a more significant role in these earlier years (e.g., replacement of methyl
tert-butyl ether [MTBE], volumetric excise tax credit [VEETC], and changes in refining
operations). In more recent years other factors impacted the corn ethanol marketplace as well,
such that the effect of the RFS Program is estimated to be 0-2.1 billion gallons per year [Chapter
6, sections 6.2, 6.3]. Based on these data, it is estimated that 0-9% of the corn ethanol production
and consumption in the United States from 2005-2018 is attributable to the RFS Program.
Uncertainties in the estimated effect of the RFS Program on domestic corn ethanol production
and consumption remain, including the effect of the RFS Program in establishing market certainty
and infrastructure buildout before the mandates were in full effect, future crude oil prices, the
costs or willingness of refiners to switch back to producing finished gasoline without ethanol if
blending ethanol were no longer economical, and many others. These factors are difficult to
quantify. Thus, notwithstanding the many uncertainties, the ranges above represent the most
current estimates based on current information for the effect of the RFS Program on domestic
corn ethanol production and consumption in the United States [Chapter 6, sections 6.3.7, 6.4.4,

6.6].

3 Energy Independence and Security Act of 2007, Pub. L. No. 110-140, § 202, 121 Stat. 1492, 1521-28 (2007)
(codified as amended at 42. U.S.C. § 7545(0)). Detailed assessment of the GHG balance of corn ethanol and other
biofuels are not in scope of this report series. See Chapter 2 (Box 2.2) for an overview and see Federal Registry (FR)
FRL-9307-01-OAR (https://www.epa.gov/renewable-fuel-standard-program/workshop-biofuel-
greenhouse-gas-modeling) and EPA’s 2023 lifecycle analysis Model Comparison Technical Document

(https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P1017P9B.pdf).
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The RFS Program likely had a larger effect on biodiesel and renewable diesel (and other biofuels)
throughout the years of the RFS2. However, there is insufficient information available at present
to confidently quantify the attributional effect annually of the RFS Program alone on biodiesel
and renewable diesel. This is mostly due to a lack of data and peer-reviewed studies that focus on
biodiesel and control for key factors important in the biodiesel market, such as the Biodiesel Tax
Credit (BTC) and state incentive programs. Initial estimates suggest that taken together, the RFS
Program and the BTC are likely responsible for 70—100% of historical biodiesel and renewable
diesel use in the United States [Chapter 7].

The development of the dry mill ethanol industry in the United States was largely underway and
mostly completed by the time that the RFS2 was passed and took effect. These legislative and
regulatory actions, or the prospects of them, likely provided policy certainty for investors,
including farmer cooperatives. The use of corn and soybean surpluses for transportation—driven
by a variety of factors—was in effect a market clearing mechanism that reduced surplus stocks,
sustained crop prices above the costs of production, and partially shifted the support of
agricultural surpluses from the Farm Bill to the transportation sector.

This report only quantifies the volumes of corn ethanol attributable to the RFS Program alone and
therefore the effects on land and other environmental and resource conservation issues are only
quantified for the RFS-effect on corn ethanol, and not for the RFS-effect on soybean biodiesel or
other biofuels.

As the effect of the RFS Program on corn ethanol varies through time and includes zero, so do
estimates on cropland expansion from the RFS Program [Chapter 6, section 6.4]. Between zero
and 1.9 million acres of new cropland (0-20% of the observed increase in cropland, 0-0.5% of
all cropland) and between zero and 3.5 million acres of additional corn (0-35% of the observed
increase in corn, 0-3.7% of all corn), mostly in the Midwest, are estimated to be attributable to
the RFS Program. Data limitations prevent the isolation of the exact areas of cropland expansion
that were estimated attributable to the RFS Program. For the high end of these ranges, there is a
greater estimated increase in corn acreage than overall cropland acreage because some new corn

may come from switching of crops on existing cropland (commonly from soy, wheat, or cotton).

Environmental Effects

Applying the estimated ranges of cropland expansion potentially attributable to the RFS Program
suggests that the RFS Program may have been responsible for a range of effects, from no effect to
small negative effects on soil quality [Chapter 9, section 9.3.3], water quality [Chapter 10, section

10.3.3], and other environmental effects covered in this report, as concluded but not quantified in
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the RtC1 and RtC2. More precise descriptions or quantifications of effects on various
environmental end points are not possible because data identifying specific areas of RFS-induced
land use change are unavailable.

The RtC3 reiterates the conclusions from the RtC1 and RtC2 that emissions of nitrogen oxides
(NOy), sulfur oxides (SOx), carbon monoxide (CO), volatile organic compounds (VOCs),
ammonia (NH3), and particulate matter (PM;s) can occur at each stage of biofuel production,
distribution, and usage and impact air quality [Chapter 8]. In addition, impacts on ambient
concentrations vary depending on the geographic location and local conditions. The EPA’s anti-
backsliding study, which focused on changes in air quality associated with vehicle and engine
emissions (rather than the full lifecycle) using “pre-RFS” fuel and “with-RFS” fuel, found ozone
and PM; s can increase or decrease depending on location, and in general, NO, and acetaldehyde
increase, while CO and benzene decrease [Chapter 8, section 8.3.2.2].

Lifecycle assessments of criteria air pollutants and precursors using GREET (Greenhouse Gases,
Regulated Emissions, and Energy Use in Technologies) suggest that lifecycle emissions per unit
energy from corn ethanol are generally higher than from gasoline for VOCs, SOx, PM15, PM o,
and NOx, and that lifecycle emissions per unit energy from soybean biodiesel are generally higher
than from diesel for VOCs, SOy, and NOy. However, the location of emissions from biofuel
production tends to be in more rural areas where there are fewer people. How this translates to
health effects on communities is complex, as it depends not only on the number of people, but on
their demographics and vulnerability, as well as the dose-response relationship, which is
pollutant-specific, among other factors. Trends suggest that the potential lifecycle effects per unit
energy from biofuels are decreasing over time as industries mature and practices improve. These
lifecycle inventories from GREET estimate emissions rather than estimate actual effects to
biological receptors (e.g., humans, ecosystems) and may underestimate effects from fossil fuels
due to the omission of factors such as oil spills [Chapters 8, 10, 11; sections 8.5, 10.5, 11.5].
Although this report estimates that nationally 0 to 1.9 million acres of additional cropland and

0 to 3.5 million acres of additional corn may be attributable to the RFS Program for the historical
period assessed, there are insufficient data to determine potential land, water, and species impacts
in specific areas below the county scale. If a portion of the observed cropland expansion was due
to the RFS Program, it may have had some effect on critical habitat and threatened and
endangered species; however, whether that effect would have constituted an adverse effect in the
context of the Endangered Species Act (ESA) is unknown [Chapter 12, sections 12.3.2 and
12.3.3; Chapter 13, sections 13.3.2.2 and 13.3.3]. EPA has separately evaluated the potential
effects on threatened and endangered species for 2023—2025 in the Set Rule (docket #EPA-HQ-
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OAR-2021-0427) and determined that the rule is not likely to adversely affect listed species and
their designated critical habitats.*

Overall, even though the estimated environmental impacts from the RFS Program may be small,
any impacts may represent additional strain to already strained environments and could be
significant locally. Some conservation practices are becoming widely adopted in the United
States with positive effects on the environment, while others are not. Many of the potential
impacts from the RFS Program specifically and biofuels more generally could be offset with

greater adoption of conservation practices [Chapter 3, section 3.2.1].

Likely Future Effects

The likely future effects from the RFS Program were published in the Final Set Rule for 2023—
2025 and projected an increase of 3.9 billion gallons in 2025 due to the RFS Program over the
baseline (with no RFS Program) [Chapter 6, Table 6.12]. This increase in 2025 from the RFS
Program is primarily from increases in biodiesel and renewable diesel from soybean oil

(+1.5 billion gallons), increases in cellulosic biofuel from compressed natural gas (CNG)-
liquified natural gas (LNG) biogas (+932 million gallons), and increases in corn ethanol (+787
million gallons). Domestic production and consumption of other biofuels are expected to change
little by comparison. These estimated impacts in 2025 from the RFS Program are different from
the trends through time from 2022 to 2025. Though highly uncertain, EPA determined in its ESA
biological evaluation for the Set Rule that the RFS-attributable volumes could potentially lead to
an additional increase of up to 2.65 million acres of cropland by 2025.

While the projected cropland expansion for 2023-2025 is slightly larger than the estimated
historical cropland expansion from the RFS Program, it cannot be said with reasonable certainty
that any particular environmental and resource conservation effect will be impacted, due to the
numerous layers of uncertainty between the finalized RFS annual volumes and on-the-ground,
localized land use changes. These projected future effects remain uncertain due to many other
factors, including ongoing recovery from the global COVID-19 pandemic, uncertainty in the

penetration of E15 in the marketplace, uncertain growth of cellulosic ethanol production from

* On August 3, 2023, EPA completed its Endangered Species Act informal consultation on the Renewable Fuel
Standard (RFS) Program: Standards for 2023-2025 and Other Changes rulemaking (also known as the RFS “Set
Rule”). With the Biological Evaluation that EPA submitted to the National Marine Fisheries Service (NMFS) and
Fish and Wildlife Service (FWS) on May 19, 2023, EPA determined that the RFS Set Rule is not likely to adversely
affect listed species and their designated critical habitats. EPA received letters of concurrence with this
determination from NMFS on July 27, 2023, and from FWS on August 3, 2023, thereby concluding the consultation.
The Biological Evaluation and Letters of concurrence are available at https://www.epa.gov/renewable-fuel-standard-
program/final-renewable-fuels-standards-rule-2023-2024-and-2025.
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agricultural or marginal lands, and complex transportation market dynamics, among other factors

[Chapter 2, section 2.3.2; Chapter 6, section 6.5].

Background

In August 2005, the Energy Policy Act of 2005 (EPAct)’ was enacted, which included the
creation of the RFS Program to be administered by the EPA. In December 2007, EISA was enacted with
the stated goals of “mov[ing] the United States toward greater energy independence and security [and] to
increase the production of clean renewable fuels.” In accordance with these goals, Section 202 of EISA
revised the RFS Program to nearly double the volume of renewable fuel required to be blended into
transportation fuel from 5.4 to 9 billion gallons in 2008 and to 36 billion gallons per year by 2022. EISA
also included Section 204 which required this report every three years. The two versions of the RFS
Program under the EPAct and EISA are commonly called the “RFS1” (in effect 2006-2008) and “RFS2”
(in full effect since 2010).°

More than a decade after the full implementation of the RFS2, there is sufficient data and
scientific literature to assess partially the historical effects of the RFS Program. These data and
information were not available for the 2011 RtC1, which was primarily forward looking; and, much of it
was not available for the 2018 RtC2. Many important analyses have been published since 2018. The detail
and sophistication of the literature has evolved over time, with earlier studies often presuming the RFS
Program was the only factor affecting biofuels in the United States and assuming higher levels of biofuel
production than later occurred (e.g., cellulosic biofuels). More recent studies include more market and
industry detail, with more realistic assumptions of biofuel production levels informed by observations.
Thus, more than a decade after implementation of RFS2, there exist data to more fully assess the potential
impacts of the RFS Program since its inception.

One of the emphases in the RtC3 is on attribution of effects to the RFS Program as opposed to
biofuels in general. Impacts from the RFS Program may overlap partly or entirely with the impacts from
biofuels more generally. Many studies have assumed either implicitly or explicitly that U.S. biofuel
production was driven solely by the RFS Program, which has limited the ability of previous assessments
to attribute effects to the Program. There are many policies—federal and state—and economic and
agronomic factors that affect biofuel production, not just the RFS Program. It is not the purpose of the

RtC3 to assess the effect of all these other drivers on biofuels, nor to assess the environmental effects of

> Energy Policy Act, Pub. L. No. 109-58, 119 Stat. 594 (2005).

62009 was a transition year between programs, where the total biofuel volume standards were based on the RFS2-
level volumes, but there was only a single total renewable fuel standard as with the RFS1. The RFS2 with its four
nested renewable fuel standards [Chapter 1, section 1.1] was not fully implemented until 2010.
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all of agriculture or even all agricultural feedstocks that may be used for biofuels. However, many of
these contexts are discussed for comparison. Rather, the purpose of this report, as stated clearly in EISA,
is to assess the impacts to date and likely future impacts of the RFS Program to inform Congress and EPA
in the administration of the Program.

The RtC3 evaluated all biofuel-feedstock-region combinations that produced RINs (e.g.,
biodiesel-soybean-Argentina, ethanol-corn-U.S.) since the inception of the RFS Program (2005) to 2020,
and focused on those that dominated the U.S. biofuel marketplace. Thus, while 17 combinations were
evaluated for this report (Figure IS.1, Chapter 2, section 2.3), four were identified as potentially having
substantive impacts on the environmental effects covered in this report: (1) domestic corn ethanol, (2)
domestic soybean biodiesel, (3) domestic fats, oils, and greases (FOGs), and (4) imported ethanol from
Brazilian sugarcane. Although the emphasis of the RtC3 is on these four biofuels, other biofuels and
effects are also discussed in the chapters where they may be particularly relevant (e.g., cellulosic biofuels

in Chapter 9 [section 9.6], palm biodiesel from Southeast Asia in Chapter 16 [section 16.4 and 16.5]).
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Figure IS.1. The estimated volumes of biofuel (million gallons) imported or domestically produced from
individual biofuel/feedstock/region combinations from 2005 to 2020 (same information as Chapter 2, Table
2.17). All combinations are mentioned in the RtC3 but the four dominant biofuels (*) are emphasized. Note that

biodiesel also includes renewable diesel.®

7 For Figure IS.1, sugarcane ethanol from Central America and the Caribbean (CAC) was combined with Brazil
because, as explained in Chapter 2, most of the ethanol imported from the CAC actually originated in Brazil.

¥ Details on the sources of information for Table IS.1 are in Chapter 2 and Appendix B. CNG/LNG-MSW stands for
compressed natural gas (CNG) or liquified natural gas (LNG) from municipal solid waste (MSW).
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The statutory language in Section 204 of EISA establishes the general environmental and
resource conservation issues to be addressed in the reports. The authors interpret and define terms in the
statutory language based on technical knowledge of the subject matter. From this, the categories listed in
the statutory language were reorganized into groups that are more consistent with the scientific literature
(Table IS.1).

In addition to what is included in the statutory language of EISA Section 204, what is not
included in Section 204 helps to limit the scope. GHGs and climate change are not mentioned in EISA
Section 204, and thus are not explicitly addressed in this report (but see Chapter 2, Box 2.2 for a brief
overview). GHGs are explicitly addressed in EISA Section 202 which modified the RFS Program, and are
evaluated during the biofuel pathway analysis conducted by EPA as part of the ongoing implementation
of the RFS Program. EPA maintains a summary of lifecycle GHG intensities estimated for the RFS
Program, which are available in spreadsheet form in a document titled “Summary Lifecycle Analysis

Greenhouse Gas Results for the U.S. Renewable Fuels Standard Program.”’ EPA’s

Table IS.1. Mapping of statutory language in EISA Section 204 and the RtC3

EISA Section 204(a) statutory language RtC3 chapter number (and title)
Environmental [. . .] and Resource [Clonservation [Ijssues  Chapters contained in Part 3
[Alir quality Chapter 8 (Air quality)
[E]ffects on hypoxia Chapter 13 (Aquatic ecosystems)
[Plesticides, sediment, nutrient, and pathogen levels in Chapter 10 (Water quality)
waters
[A]creage and function of waters Chapter 11 (Water availability)
[S]oil environmental quality Chapter 9 (Soil quality and conservation)
[S]oil conservation Chapter 9 (Soil quality and conservation)
[W]ater availability Chapter 11 (Water availability)
[E]cosystem health and biodiversity Chapter 12-14 (separated by ecosystem type for terrestrial [12], aquatic [13],
and wetlands [14])
[ljmpacts on forests Chapter 12 (Terrestrial ecosystems)
[llmpacts on [. . .] grasslands Chapter 12 (Terrestrial ecosystems)
[ljmpacts on [. . .] wetlands Chapter 14 (Wetlands)
The growth and use of cultivated invasive or noxious Chapter 15 (Invasive species)
plants and their impacts on the environment and
agriculture.
[T]he annual volume of imported renewable fuels and Chapter 16 (International effects)

feedstocks for renewable fuels, and the environmental
impacts outside the United States of producing such fuels
and feedstocks.

° This document is available on EPA’s website at https:/www.epa.gov/fuels-registration-reporting-and-compliance-
help/lifecycle-greenhouse-gas-results. This summary is also available in docket EPA-HQ-OAR-2021-0324.
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analyses of the lifecycle assessment (LCA) of various pathways are also published online.'® A list of
pathways that have been approved by regulation can also be found at 40 CFR 80.1426(f)(1). This
approach of omitting GHGs in the RtC3 is consistent with the RtC1 and RtC2.

Comparison of Overall Conclusions Between the RtC2 and RtC3

This section presents the overall conclusions from the RtC2 (literature review cutoff date of April
2017) and discusses any different or new conclusions in RtC3 versus the earlier report. Overall
conclusions from the RtC2 were:

e Disregarding any effects that biofuels have on displacing other sources of transportation

energy, evidence since 2011 indicates the specific environmental impacts listed in EISA
Section 204 are negative. The environmental and resource conservation impacts, whether
positive or negative, related to displacement of other transportation energy sources by
biofuels were not assessed.

e Literature published since 2011 supports the conclusion of the potential for positive and
negative effects. Available information suggests, without accounting for the environmental
effects of displacing other sources of transportation energy, the specific environmental
impacts listed in EISA Section 204 are negative in comparison to the period prior to
enactment of EISA.

e [Evidence continues to support the conclusion that biofuel production and use could be
achieved with reduced environmental impacts. The majority of biofuels continue to be
produced from corn grain and soybeans, with associated impacts that are well understood.
Cellulosic and other feedstocks remain a minimal contributor to total biofuel production.

The RtC3 reaftirms the conclusions in the RtC2. The RtC2 reported that there were land use
change trends observed that were consistent with a potential effect from the RFS Program (e.g., increases
in corn acreage and total cropland). However, there was not enough information available at the time to
separate the effects of biofuels generally from the effects of the RFS Program specifically (see RtC2 page
ix). The RtC3 advances the knowledge in this important area. The RtC3 reaffirms the conclusion that
biofuels have the potential for positive and negative effects, and that the majority of impacts to date come
from lifecycle effects from corn ethanol and soybean biodiesel. The RtC3 does not focus on comparing
the impacts from biofuels to those of conventional fossil fuels, as Section 204 does not address fossil
fuels' impacts. Part 3 of this report (Chapters 8—16) includes limited comparisons where the scientific

literature is available. Additionally, related material comparing biofuels to their fossil fuel counterparts on

10 See https://www.epa.gov/renewable-fuel-standard-program/approved-pathways-renewable-fuel and
https://www.epa.gov/renewable-fuel-standard-program/other-actions-renewable-fuel-standard-program
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a per-megajoule basis is presented from established lifecycle models (i.e., Greenhouse Gases, Regulated

Emissions, and Energy Use in Technologies [GREET]), and from other approaches and models. The

RtC3 focuses on estimating the impacts from the RFS Program, though impacts from biofuels more

broadly are also discussed as important context. Overall conclusions from the RtC3 are:

The overall effect of the RFS Program on biofuels depends on the biofuel being discussed
and is dynamic through time because of several co-occurring market and non-market factors.
The RFS Program itself played a relatively minor role in the increase in corn ethanol in the
United States, but has played a more significant role for other biofuels.

The volume of domestic corn ethanol consumption estimated to be attributable to the RFS
Program historically suggests that a maximum of 0—1.9 million acres of cropland expansion
(roughly 0-20% of the estimated increase in cropland, and 0-0.5% of all cropland) and 0-3.5
million acres of corn expansion (roughly 0—35% of the observed increase in corn acreage,
and 0-3.7% of all corn acreage) are estimated to be attributable to the RFS Program.

As the historical effect of the RFS Program on domestic corn ethanol production and
consumption and associated land use changes varies through time and includes zero in the
range of estimates each year, estimates of environmental impacts also vary through time and
include zero each year. This holds for most end points examined, with small but negative
potential impacts nationally on soil quality, water quality, biodiversity, and other effects.
Local impacts may be larger in some areas for some effects, but this could not be quantified
for the RtC3.

Though adoption of conservation practices is improving, additional conservation measures—
such as further adoption of conservation tillage and cover crops—would help reduce the
impacts of biofuels generally and the potential RFS Program specifically on the environment.
Consistent with the RtC1 and RtC2, the RtC3 does not estimate or assess the impact of
increased renewable fuel consumption on conventional fossil fuel consumption, nor does it

assess the environmental impacts of changes in of fossil fuel production or consumption.

The following sections discuss specific conclusions from chapters in the RtC3 on the impacts to date, the

likely future effects, uncertainties and limitations, and recommendations. !

' Specific conclusions from Chapters 1—4 are not presented in the Integrated Synthesis as these are more
background material for the RtC3.
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Specific Conclusions: Impacts to Date

Domestic Land Cover and Land Management [Chapter 5]

Land use change from all causes shows a steady increase in total cultivated cropland and
corn/soy acreage since 2007. Based on the 2012, 2015, and 2017 U.S. Department of Agriculture
(USDA) National Resource Inventory (NRI), from 2007 to 2017 there has been a 10 million-acre increase
in cultivated cropland coinciding with a 15 million-acre decline in perennially managed land (i.e., sum of
lands in the Conservation Reserve Program [CRP],'? pasture, and noncultivated cropland). This increase
in cultivated cropland was largely driven by a 26.5 million-acre increase in corn and soybeans with small
grains and hay in rotation decreasing by 16.5 million acres. Results from other federal datasets such as the
Cropland Data Layer (CDL) and the Census of Agriculture are consistent with the NRI when harmonized
appropriately. Thus, after decades of decline in cultivated cropland since at least the 1980s, increases have
been recorded in multiple federal datasets using a variety of methodologies following the 2007 to 2012
period. More than half of the corn and soybean increase has come from other cultivated cropland (56%),
while the rest has come from approximately equal proportions of pasture (13%), noncultivated cropland
(20%), and CRP (11%). Many of these changes are taking place throughout the Midwest, with hotspots in
northern Missouri, eastern Nebraska, North and South Dakota, Kansas, and parts of Wisconsin. Lands
enrolled in the CRP have steadily decreased since 2007; and, although these decreases are likely due to
Farm Bill policies and not directly to biofuels, how these lands are managed after leaving the CRP are
likely influenced by biofuels and the RFS Program. More recently, the Agriculture Improvement Act of
2018 increased maximum allowable CRP land to 27 million acres in 2023 and enrolled acreage has
increased significantly. Data to assess the effect of the RFS on CRP enrollment under this new allotment

is not currently available.

Attribution: Corn Ethanol and Corn [Chapter 6]

Multiple lines of evidence suggest the RFS Program itself played a relatively minor role in
the growth of corn ethanol in the United States (0—1.0 billion gallons per year from 2002-2011) and
may have played a more important role more recently since reaching the E10 blend wall (0-2.1
billion gallons per year from 2012-2018)."3 Many factors overlap with and predate the RFS Program.
Principal among these was the need of a replacement for methyl-tert-butyl-ether (MTBE) as an

12 hitps://www.fsa.usda.gov/programs-and-services/conservation-programs/conservation-reserve-program/

13 The E10 blend wall commonly describes the amount of ethanol that can be blended into the gasoline pool at 10%
by volume. Above this limit, higher amounts of ethanol consumption domestically would have to come from higher
blends where it faces greater economic challenges. E15 is approved for use in vehicles manufactured after 2000 but
remains limited in availability nationally [see Chapters 2 and 3].
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oxygenate'* in gasoline for areas with smog concerns administered under the Reformulated Gasoline
Program (RFG). From 2003 to 2006, largely before the RFS Program, roughly a third of the national
gasoline pool needed a substitute for MTBE because of growing concerns, ongoing litigation, and
individual states addressing the environmental issues associated with MTBE. At the time, that substitute
was ethanol from corn grain. Ethanol is an oxygenate, and ethanol from corn grain was estimated at the
time to be the only substitute available in the quantities needed that did not require expensive refinery
retrofitting that other petroleum-based alternatives may have needed. Furthermore, ethanol did not have
the same potential water quality concerns as other petroleum-based substitutes for MTBE (e.g., ethyl
tertiary butyl ether, or ETBE). The logistical barriers that had previously limited ethanol consumption to
the Midwest had to be overcome to provide ethanol to the largely coastal and urban areas that were
administered under the RFG.

Gasoline used to be produced as “finished gasoline” (E0) ready for sales at gas stations. This
gasoline met all the necessary standards under the Clean Air Act (CAA) for transportation fuels. To make
E10 in these early years, EO was “splash blended” with ethanol often at the gas station or terminal. Splash
blending refers to mixing ethanol with finished gasoline to reach 10% ethanol by volume. Between 2005
and 2010, refineries invested in switching to “match blending,” whereby refineries utilized the higher
octane in ethanol in their processes to target a specific octane rating in the finished product. To carry out
match blending, refineries switched to producing Blendstocks for Oxygenate Blending (BOBs), which are
"unfinished gasoline" that can only be legally sold at the pump (i.e., meeting all applicable CAA
standards) after an oxygenate is added. These BOBs were then mixed with ethanol at the refinery or
terminal to produce E10. BOBs are cheaper to produce because they require less refining and take
advantage of the higher octane value of the oxygenate. They rely on changes to refinery operations and
the downstream distribution and blending network. As a result of these changes, it would be difficult and
costly to revert back to the production of finished gasoline.

Once the supply chains were in place, and with the construction boom in ethanol biorefineries in
2006 and 2007, ethanol in the United States was poised to quickly reach market saturation at 10% of the
gasoline pool. By 2006 (the first year of the RFS Program), ethanol consumption far outpaced the RFS1
mandates and had already increased to 40% of the E10 blend wall. By 2010—the first year of the RFS2—
ethanol consumption was nearing 93% of the E10 blend wall, and the volume of ethanol production either

operating or under construction was already 13.4 billion gallons. Record high oil prices in this period,

14 Octane enhancers are added to transportation gasoline to avoid engine knock. Octane enhancers may be
oxygenates (i.e., contain oxygen, such as MTBE and ethanol) or not (e.g., tetra-ethyl lead, or “lead”), and may be
petroleum-based (e.g., MTBE) or renewable (e.g., corn ethanol). Octane enhancers used in U.S. gasoline has
changed through time, from lead in the 1920s—1980s, to MTBE in the 1980s—2000s, to ethanol from the 2000s to the
current day.
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beginning in 2005, also made gasoline with 10% ethanol cheaper to produce than gasoline without
ethanol, and so the market responded with increased ethanol consumption also in non-RFG areas. If these
factors had not been in place, the RFS Program likely would have had a stronger and more direct effect in
encouraging the growth of corn ethanol in the United States.

More recently, the RFS Program may be playing a more significant role in the continued
production and consumption of corn ethanol. Market and policy conditions have changed with the
expiration of the Volumetric Ethanol Excise Tax Credit (VEETC, 2004-2011), the drop in oil prices after
2015, and the decrease in consumption from the global COVID-19 pandemic starting in 2020. Therefore,
the effect of the RFS Program in sustaining production may be more important in recent years compared
with historically. However, there remains uncertainty surrounding the recent influence of the RFS
Program because refineries have already made costly investments to switch to match blending, and
retrofitting refineries to produce gasoline without ethanol could be cost prohibitive.

The RFS Program is a policy applied to a dynamic market, and therefore the effect of the policy is also
dynamic through time. RIN prices for renewable (D6) fuels provide evidence that the RFS Program
increased U.S. consumption of renewable biofuels in 2009 (and late 2008) and from 2013 to 2019. Higher
D6 RIN prices after reaching the E10 blend wall in 2013 are likely not indicative of an effect on corn
ethanol, because of the nested nature of the RFS standards. They are indicative of an effect on total
renewable fuel. Nonetheless, estimates from simulation models, the observed overproduction of ethanol
domestically compared to the RFS standards, and other sources suggest that from 2006 to 2011 the RFS
Program—in isolation—accounted for 0—1 billion gallons of ethanol. This effect in the earlier years
appears to be due to contributions to market certainty and encouragement of capital investment from
EISA, and to a lesser extent by stabilization of demand during the Great Recession of 2008-2009. In
other years of this period, the RFS Program is estimated to have had no effect on ethanol production, with
other factors having more influence (Figure IS.2). From 2012 to 2018, there is a wider range of estimates
of the effect of the RFS Program than in the 2006—-2011 period, as other contributing factors diminished
(e.g., oil prices declined after 2015, VEETC expired at the end of 2011, MTBE transition had already
occurred). From 2012 to 2018, annual estimates of the range of impacts of the RFS Program vary from
year to year. The minimum estimated effect is zero for every year examined, and the maximum varied
from year to year and was highest in 2016 at 2.1 billion gallons. (Figure IS.2). The low end of this range
is driven by a thorough state-by-state analysis of the relative economics for refiners for match blending
10% ethanol into gasoline, taking into consideration its considerable octane value. In addition, even
where the economics for blending ethanol may not have been favorable for some gasoline grades in some
states, a strong “lock-in effect” from the transition to match blending was presumed to prevent reversion.

The high end of this range is from economic modeling of the biofuels industry that includes key factors
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such as the price of oil, MTBE, and the potential octane value of ethanol. This report focuses on this
historical period when the growth in domestic ethanol production occurred.

Combining these estimated volumes attributable to the RFS Program with literature reviews and a
recent statistical analysis suggests that additional corn and new cropland areas, with estimates ranging
from zero to as high as 3.5 + 1.0 million acres of corn, and from zero to as high as 1.9 £ 0.9 million acres
of cropland expansion may be attributable overall to the RFS Program from direct and indirect effects. '
Though small relative to total cropland (0—-0.5%) and total corn acreage (0-3.7%), this corresponds to 0—

20% of the increase in cropland and 0—35% of the increase in corn acreage from 2008 to 2016.
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Figure IS.2. Comparison of estimates of ethanol use attributed to the Renewable Fuel Standard (RFS)
Program from key studies in Chapter 6. Shown are estimates from recent models that separate estimated RFS
effects from other key factors (e.g., oil price, MTBE, transition to match blending). These include: the annual
partial-equilibrium (PE) model in Taheripour et al. 2022 (AEPE, blue line, circles); the two general equilibrium
(GE) periods in Taheripour et al. 2022 (GTAP-BIO; 20042011, blue “x”; and 2011-2016, blue “+”); Newes et al.
2022 using the Biomass Scenario Model (BSM, green line, triangles); and an economic analysis from EPA 2022
(red line, circles). Note the estimate in 2006 from EPA 2022 is driven more by the MTBE phaseout than the RFS
Program (see section 6.3.5). The estimates from Newes et al. (2022) show those that include the estimated effect the
RFS Program had on increasing market certainty (dashed green lines, two levels of 20% and 40% risk reduction),
and those that do not include this effect (solid green line).

15 Note that the additional corn could have come all from existing cropland, or up to 1.9 million acres of it could
come from new cropland. This result simply means that it is estimated that there are 0-3.5 million more acres of
corn and 0—1.9 million more acres of total cropland than would have occurred absent the RFS Program.
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There are many uncertainties associated with this estimate of the volume of ethanol attributable to
the RFS Program. There is no single study that used robust methodologies across all steps of the analysis;
thus, this estimate represents a synthesis from the best available studies to date. Disentangling the effect
of the RFS Program, as required under EISA Section 204, is difficult given the many co-occurring factors
that affect biofuels in the United States. As a mandate, the RFS Program created a guaranteed market
demand for biofuels in the United States that certainly could have driven the increase in ethanol
production and consumption. However, this potential market demand from the RFS Program also existed
for cellulosic biofuels that have not seen a similar increase; thus, clearly other factors must also align.
There are many factors not included or not investigated in depth in this analysis, including a more detailed
examination on the effect the RFS Program had in influencing investor confidence and infrastructure
buildout before the mandates were in full effect, the costs or willingness of refiners to switch back to
producing finished gasoline if the RFS Program were no longer in effect, and others. These factors are
difficult to quantify. Furthermore, as events played out, non-RFS factors that are quantified and known to
influence the market were favorable and appear to sufficiently explain much or all of the increase in corn
ethanol production and consumption in the United States. Thus, though notwithstanding several
uncertainties, these represent the best estimate based on currently available information for the effect of
the RFS Program on corn ethanol and the associated effects on cropland in the United States.

These RFS effects, though smaller than anticipated by many studies discussed in Chapters 4 and
6, may still have implications on the nation’s air, land, and water, and have more significant effects
locally. However, specific areas where environmental effects may have occurred cannot be quantified
with confidence due to the vast quantity of potential cropland in the United States and the multitude of
factors that contribute to an individual farmer’s decision whether to bring additional land into crop
production. The more likely hotspots of increased cropland and corn/soy acreage have been identified

throughout the country (Chapter 5, section 5.3.1).

Attribution: Biodiesel and Renewable Diesel [Chapter 7]

The RFS Program, especially after the expansions in the RFS2, likely always played an
important role in supporting the production and consumption of biodiesel and renewable diesel, in
contrast to corn ethanol. However, separating the effect of the RFS Program quantitatively from
other factors remains difficult. Before 2010 and the RFS2, the RFS Program had little effect on
biodiesel because there was no separate biodiesel or advanced mandates, and domestic corn ethanol and

imported Brazilian sugarcane ethanol'® were the most cost-effective way to meet the total renewable fuel

' Imports from Brazil were largely temporary, limited to a few early years before U.S. production had grown, and
to a few later years when drought occurred that lowered U.S. production.
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standards under the RFS1. Other factors such as the Biodiesel Tax Credit (BTC) and state incentives were
especially influential in these earlier years for biodiesel. Once there existed a biodiesel mandate with the
RFS2, the RFS Program and other policies played an important role in the increased production and
consumption of biodiesel and renewable diesel. Biodiesel and renewable diesel demand is fundamentally
different from ethanol—biodiesel and renewable diesel were not incentivized by the need for a substitute
for MTBE in gasoline, and oil prices were not ever high enough to make biodiesel competitive with diesel
on the basis of price alone. Thus, the RFS Program created an important added incentive beginning with
the RFS2 in 2010. Advanced (D5), biomass-based diesel (D4), and cellulosic (D3) RIN prices provide
evidence that the RFS2 increased U.S. consumption of advanced, biomass-based diesel, and cellulosic
biofuels. Aside from observed RIN prices and a handful of studies, there is much less quantitative
information in the peer-reviewed literature on the effects of the RFS Program on biodiesel compared with
effects on corn ethanol, and none of the studies assessed included other factors such as FOGs, the BTC, or
state biofuels mandates. The handful of economic models suggest a strong effect from the RFS
Program—with a 1 billion gallon increase in the RFS biodiesel standard inducing an increase in biodiesel
consumption by 0.6—1.1 billion gallons. Comparison of state and federal mandates suggest that while
roughly 0-30% of biodiesel consumption may be due to state programs (e.g., mandates and low carbon
programs like the California Low Carbon Fuel Standard, LCFS), the remaining 70—-100% may be
attributable to a combination of other factors, primarily the RFS Program and the BTC. The effects of the
RFS Program on the historical period cannot be isolated at this time because most studies do not separate
the RFS from other important factors that occurred at the same time such as the BTC and state programs.
Although multiple lines of information suggest a sustained effect of the RFS Program since 2010 on
supporting biodiesel production and consumption, the effects from other factors such as the BTC and state
incentives cannot be quantitatively separated from the effects of the RFS Program at this time. Thus,
instead of a volumetric and acreage-based estimate of attribution in the RtC3, a more general synthesis is

provided.

Air Quality [Chapter 8]

The RtC3 reiterates the conclusions from the RtC1 and RtC2 on air quality, concluding that
emissions of nitrogen oxides (NO,), sulfur oxides (SO), carbon monoxide (CO), volatile organic
compounds (VOCs), ammonia (NH3), and fine particulate matter (PM:s) can be impacted at each
stage of biofuel production, distribution, and usage. EPA’s “anti-backsliding” study (see section
8.3.2.2) examined the impacts on vehicle and engine emissions and air quality from two different fuel
scenarios for calendar year 2016. Specifically, the study compared air quality impacts of actual renewable

fuel volumes in 2016 to a scenario with renewable fuel use approximating the 2005 levels before the RFS
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was enacted. The anti-backsliding study, which is not a full lifecycle assessment but focused on vehicle
and engine emissions, found atmospheric concentrations of ozone and PM, 5 can increase or decrease
depending on location, and in general, NO; and acetaldehyde concentrations increase, while CO and
benzene concentrations decrease. Lifecycle analyses conducted by the Argonne National Lab using
GREET indicate that on a per unit energy basis many non-GHG emissions, including of several criteria
air pollutants, are higher for biofuels per unit energy than their petroleum counterparts. However, the
location of emissions from biofuel production tends to be in more rural areas where there are fewer
people. How this translates to health effects on communities is complex, as it depends not only on the
number of people, but on the dose-response relationship (e.g., possibly fewer people in rural areas but
receiving higher or lower doses), their demographics and vulnerability (e.g., elderly or other at-risk
populations), as well as other factors. Other modeling approaches support these findings, but also show
that biofuels are improving as industries mature and practices improve. These analyses, though state-of-
the-art, may not reflect some recent improvements in biorefining, are not spatially resolved enough to be
directly linked with exposure, and do not account for many large-scale events associated with oil and gas

exploration that may affect the overall results (e.g., oil spills).

Soil Quality [Chapter 9]

Effects on soil quality to date, as with effects detailed in other chapters, continue to be
primarily from the cultivation of corn and soybean feedstocks. The soil quality effects of these crops
are well established in the scientific literature, yet the amount attributable to biofuels and the RFS
Program specifically remains less understood. Soil quality impacts are highest when land in perennial
cover is converted to annual crop production. Simulations using the EPIC (Environmental Policy
Integrated Climate) model estimate that satellite-derived conversions of 4.2 million acres of grassland to
various assumed agricultural scenarios negatively affected soil quality across a 12-state U.S. Midwestern
region, increasing erosion by -0.9-7.9%, nitrogen loss by 1.2-3.7%, and soil organic carbon loss by 0.8—
5.6%. The range in losses depended upon the assumed tillage practices, with no-till at the low end and
conventional tillage at the high end of the range of effects. As noted above from Chapter 6, an estimated 0
to 20% of cropland expansion is estimated to be associated with corn ethanol production from the RFS
Program historically, with larger attributable effects if other biofuels (e.g., soybean biodiesel) were
included quantitatively and smaller effects in years with smaller effects from the Program. Nevertheless,
applying these percentages to the modeling results yields estimates from zero to relatively small negative
soil quality effects. Thus, the effects of the RFS Program on soil quality are likely comparatively small in
magnitude relative to that of cropland over a large, multistate region or the contiguous United States, yet

may be more important at local scales. Additional conservation measures—such as further adoption of
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conservation tillage and cover crops—would help reduce the impacts on soil quality of biofuels generally

and the potential impacts of the RFS Program specifically.

Water Quality [Chapter 10]

As with soil quality, effects on water quality continue to be from cultivation of corn and
soybean, with well established relationships between water quality and these crops generally, and
less established relationships with biofuels and the RFS Program specifically. Trends in total nitrogen
(TN) and total phosphorus (TP) from the U.S. Geological Survey (USGS) National Water-Quality
Assessment (NAWQA) from 2002 to 2012 show that both are likely decreasing in the central Midwest
where conservation tillage practices have increased, and both are likely increasing in the areas of cropland
expansion in western and northern Midwest where such practices are less common. Although TN and TP
concentrations may be improving in some locations, trends in nutrient condition'’ from the EPA’s
comprehensive National Aquatic Resource Surveys (NARS) are less conclusive, with little change in
stream TN condition and many areas worsening in stream TP condition. Simulations using the Soil &
Water Assessment Tool (SWAT) in the Missouri River Basin estimated that for TN and TP loads and
concentrations, satellite-derived grassland conversion to continuous corn would result in the greatest
increase in TN and TP loads (6.4% and 8.7% increase, respectively); followed by conversion to
corn/soybean rotation (TN increased 6.0% and TP increased 6.5%); and then conversion to corn/wheat
rotation (TN increased 2.5% and TP increased 3.9%). As with soil quality, the effects from cropland
expansion potentially attributable to the RFS are estimated to be roughly 0-20% of these. These estimated
increases are relatively small on an absolute basis considering this basin is already intensively cultivated
but aggravate impacts in watersheds already affected by nutrients. Lifecycle potential eutrophication
effects for both corn ethanol and soybean biodiesel are higher than their fossil fuel counterparts (gasoline
and diesel, respectively) per unit energy and in total in most cases, although these analyses do not include
many factors and may underestimate the effects from petroleum.

Water quality considerations are not just from farming activities, but also from potential leakages
from underground storage tank (UST) systems, which may be affected by increased concentrations of
biofuels. Most older, and even some newer, existing UST systems are not fully compatible with higher
blends of ethanol (e.g., E15, E85) and may require modification before storing them. For example, the

actual tank is often compatible with E15, but some of the other system components may not be.

17 While nutrient concentration is the estimated concentration of nutrients in the water, nutrient condition refers to
the concentration relative to region-specific reference water bodies that are relatively unpolluted. Nutrient condition
in the NARS is often categorized as “good”, “fair”, and “poor.” Thus, nutrient concentration may improve, but not
enough to change nutrient condition classes.
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Water Use and Availability [Chapter 11]

National-level impacts to date on water use and availability may be relatively limited as
only 10-14% of soybean and corn acreage is irrigated, but those impacts may be important
regionally and are an additional pressure on already stressed water resources such as the High
Plains Aquifer (HPA). Most water withdrawals in the United States are for thermoelectric power (41%)
followed by irrigation (37%). And, while most corn and soybean acreages are rainfed (86% and 90%,
respectively), nearly 40% of water withdrawals for irrigation are for these two crops. Almost all of the
irrigated corn is in the western corn belt where much of the observed cropland expansion has occurred.
Water use and water availability impacts related to biofuels are primarily due to irrigation of feedstocks
(88-99% across the lifecycle), while water use in biorefineries represents a small (1-9%) and declining
percentage of lifecycle water use as biorefinery production efficiencies improve. Nevertheless, lifecycle
estimates suggest that corn ethanol requires an average of 13 times more water per gallon of fuel
produced compared to gasoline, ranging from roughly break-even with gasoline (at 8.7 gallons per gallon
fuel) under rainfed conditions and efficient conversion facilities, to greater than 100 times more water

requirements under irrigated and less efficient conversion facilities.

Terrestrial Ecosystem Health and Biodiversity [Chapter 12]

Effects on terrestrial ecosystems, particularly terrestrial biodiversity and possibly
threatened and endangered species, continue to be primarily from corn and soybean feedstock
production, with the two main drivers of effects being shifts in perennial cover to corn and
soybeans and associated agronomic practices. The USDA NRI estimates that almost half of the lands
shifting to corn and soybeans from 2002 to 2017 were previously under perennial cover (e.g., grasses on
CRP land, pasture). Satellite-derived data suggest grasslands account for 88% of land in perennial cover
that were converted to annual crops between 2008 and 2016, while 3% and 2% were from wetlands and
forests, respectively. These shifts in perennial cover may negatively impact grassland birds, bats,
pollinators and other beneficial insects, and plants, including threatened and endangered species. Across
the contiguous United States, 27 terrestrial threatened and endangered species had an estimated 10 acres
or more of non-cropland conversion to corn or soybeans within 1-mile of its critical habitat between 2008
and 2016. Of those, six threatened and endangered species had estimated conversion of 10 acres or more
within their designated critical habitat. Ancillary datasets such as from the USDA National Agriculture
Imagery Program (NAIP) are needed to verify these estimates. These impacts are from land conversion to
agriculture and cannot be attributed to the RFS Program specifically because the range of the impact of
the RFS Program on corn ethanol consumption includes zero and because methods to explicitly link the

RFS Program with individual parcels of land do not currently exist. Overall, the range of possible impacts
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from the RFS Program likely spanned from no effect to a negative effect on terrestrial biodiversity
historically (2008 to 2016). The magnitude of any impacts is uncertain and may be relatively small
compared to that of total U.S. cropland, but may still be important for locally endemic species and other
important local environmental resources. It is unknown whether these relatively small changes in land
cover and land management may or may not cross ecological thresholds for various habitats and species.
Whether these effects historically were adverse or not in the context of the ESA is unknown. Notably,
these findings do not necessarily apply for years beyond 2016, when the effects of the RFS Program on

corn ethanol and soy biodiesel production may have changed.

Agquatic Ecosystem Health and Biodiversity [Chapter 13]

As with other environmental effects, the primary impacts to date on aquatic ecosystems are
from the conversion of grasslands to corn and soy production, which often lead to increased
sediment, pesticide, and nutrient loads to aquatic ecosystems. Although the estimated effects from
the RFS Program are not likely to shift current biological conditions, they are estimated to be an
additional stress on already stressed ecosystems. As reported in the water quality chapter [Chapter 10],
although nutrient concentrations and loads in certain areas of the Upper Midwest are estimated to be
improving from the USGS NAWQA, these improvements do not appear to be sufficient to lead to
improvements in stream biological conditions (e.g., fish, macroinvertebrates). For pesticides, potential
harm to aquatic life was indicated by exceedances of benchmarks for several pesticides used in row crop
production, especially neonicotinoid insecticides widely used as coatings on corn seeds. Based on data
from nationally representative surveys of the nation’s wadeable stream miles in 2004 and about 10 years
later in 2013-2014, biological condition generally worsened between the two surveys, although there was
wide regional variation in the response. In the SWAT study in the Missouri River Basin (MORB)
introduced in Chapter 10, the flow-weighted nutrient concentrations increased by less than 5% on average
across the MORB from estimated agricultural expansion from 2008 through 2016. Thus, increases in
nutrient concentrations that may be attributable to the RFS Program are unlikely to result in new
exceedances of current state numeric nutrient criteria (where available) in agricultural regions of the
United States. However, most watersheds already experience exceedances of multiple stressors; thus,
additional nutrients aggravate stream condition even if only by a small amount. For example, according to
national surveys conducted by the EPA, 67% of the wadeable streams in the United States were already in
poor or fair biological condition as of 2004. Many states have no numerical criteria with which to
compare these concentrations. This SWAT analysis did not assess pesticides which are difficult to
accurately characterize due to the large variety of pesticides to potentially model. Total effects may be

larger or smaller because this study only included effects from agricultural expansion (expected to be the
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largest source) and not agricultural intensification or recent improvements in tillage practices.
Nonetheless, the potential effects from the RFS Program may be contributing to additional strain to
aquatic ecosystems, potentially exacerbating harmful algal blooms and hypoxia events. There were 78
aquatic threatened and endangered species that had an estimated 10 acres or more of non-cropland
conversion to corn or soybeans within 1 mile of their critical habitat between 2008 and 2016. As
discussed in Chapter 12, these cannot be attributed to the RFS Program specifically; thus, the range of
possible impacts from the RFS Program likely spanned from no effect to a negative effect on aquatic
biodiversity historically (2008 to 2016).thus, the range of possible impacts from the RFS Program likely

spanned from no effect to a negative effect on aquatic biodiversity historically (2008 to 2016).

Wetland Ecosystem Health and Biodiversity [Chapter 14]

Although cropland expansion from 2008 through 2016 is estimated to be mostly of
grasslands and not of wetlands, some additional losses of wetland acreages are estimated in
ecologically sensitive areas which had already experienced significant losses before the inception of
the RFS Program. Since 2007, the nation has lost 120.3 thousand acres of palustrine (marsh-like)
wetlands and gained 205.9 thousand acres of lacustrine (lake-like) wetlands in the conterminous United
States. The diverse wetlands within these broad classes support different species and perform different
ecosystem functions. Lacustrine habitats are generally deeper, less vegetated, and more permanently
ponded, providing ecological functions similar to lake ecosystems. Palustrine habitats, on the other hand,
are shallower, have dense emergent vegetation, generally greater biodiversity, and undergo periodic
drying that enhances biogeochemical processes such as denitrification. In the palustrine class, small,
seasonal wetlands are being lost at a faster rate, though the direct effect from biofuels generally or the
RFS Program specifically cannot be determined from available surveys. Although cropland expansion
from 2008-2016 was mostly from conversion of grassland (88%), 3% was estimated from reclamation of
wetlands, totaling nearly 275,000 acres of wetlands concentrated in the Prairie Pothole Region. A
percentage of this (0-20%) may be attributable to the RFS Program. This acreage is small compared with
historical losses of wetlands but could have cumulative environmental effects or landscape level effects in
some areas. For example, by 2004—the year before enactment of the Energy Policy Act—over half of the
historical wetlands in the lower 48 states had already been lost (>100 million acres lost), with several
Midwestern states losing more than 80% of their historical wetlands. Given currently available datasets,
which wetlands specifically may have been converted as a result of the RFS Program cannot be accurately
estimated. Unlike other waterbird species, commercially valued waterfowl (ducks, geese, swans) as a
group have not experienced national declines over the past decade, possibly due to a positive response to

availability of food (grains) and habitat from interspersed lake-like wetlands and agricultural fields along
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migration routes. While national trends in status of wetland resources document large-scale transitions
from palustrine wetlands toward more lake-like, lacustrine conditions, federal and state programs are
having a positive influence on wetland conservation. The USDA has multiple programs focused on
conserving and enhancing wetlands on agricultural lands, including the USDA Natural Resources
Conservation Service’s (USDA-NRCS) Agricultural Conservation Easement Program and the North
American Wetlands Conservation Act (NAWCA) grant program, which has contributed to the protection,
restoration, and enhancement of approximately 30.7 million acres total of wetlands and associated upland

habitats since 1991.

Invasive or Noxious Plant Species [Chapter 15]

Impacts to date on the environment from the cultivation of invasive or noxious plant species
as biofuel feedstocks have not been observed, but cultivation practices of corn and soybean
feedstocks have likely contributed to the increasing incidence of herbicide-resistant weeds.
Currently, most biofuel is produced from a small number of non-invasive feedstock species (i.e., corn,
soybean) and therefore do not pose risk of invasion directly. However, impacts from the cultivation
practices of corn and soybeans on the evolution of herbicide-resistant weeds do exist, although it is
unclear to what extent impacts can be attributed to corn and soybeans grown to meet either biofuel
demand generally or the specific requirements of the RFS Program. While potential impacts have been
identified using weed risk assessment for some newer feedstocks being considered, none are currently
used to produce biofuels and there are practices available for their mitigation (e.g., registration, reporting,

and record keeping requirements).

International Effects [Chapter 16]

Direct international effects from the RFS Program attributable to biofuel imports from
other countries could not be quantified in the RtC3. Although the United States imported biofuels
from several regions that are biologically diverse, these amounts of imported biofuel were small and
relatively short-lived, with the United States transitioning to being a net exporter of biofuels that
may actually reduce environmental effects overseas. It does not necessarily follow that overall
international effects of the RFS Program have been small, as research has shown the indirect effects of
increased biofuel production on feedstock commodity trade flows could be substantial. Combining
published simulation modeling estimates of the non-U.S. land use change effects of biofuels and
estimates for the effect of the RFS Program on corn ethanol (Chapter 6) yields an illustrative range of the
effect of the RFS Program on non-U.S. cropland area of 0 to 1.6 million acres. The estimated effect of the
RFS Program does not yet include effects on soy biodiesel. As more data become available and are

analyzed, historical relationships among U.S. biofuel policies, production, trade, environmental
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indicators, and other variables may be clarified and uncertainties reduced. Estimating indirect land use
change (ILUC) overseas remains one of the most challenging areas of biofuels research. Most simulation
models may capture U.S. policies adequately, but offer only a simplified view of the dozens of biofuel
policies in other countries, and are based on many parameters that have not been thoroughly and
transparently evaluated. The Model Comparison Exercise (MCE) conducted by OTAQ may help improve
these models and their estimates of ILUC by identifying priority areas for research.'® The United States
was a net importer of ethanol from 2004 to 2007, mostly but not entirely originating from Brazil. The
United States transitioned to a net ethanol exporter as the domestic biofuel industry matured. For
biodiesel the trends were different. After a period of little biodiesel trade from 2002 to 2006, the United
States was a net exporter of biodiesel from 2007 to 2012, and since has transitioned to be a net importer
after ethanol reached the E10 blend wall in roughly 2013 and the advanced biofuel mandate continued to
increase. Biodiesel imports from 2013 to 2017 were primarily of soybean biodiesel from Argentina, and
to a lesser extent from FOGs and palm oil from Southeast Asia, and biodiesel from Canada. After 2017,
total biomass-based imports of biodiesel have declined significantly and stopped from Argentina, and
since then are predominantly biodiesel and renewable diesel from Southeast Asia and Canada. There are
important uncertainties that remain, for example surrounding the potential for low-cost palm oil from
ecologically sensitive areas in Southeast Asia to “backfill” diverted soybean oil from international
vegetable oil markets, and especially if RFS Program total biofuel mandates increase in the future. These
effects from the RFS Program, however, may be small, as palm oil is affected by many regions and
markets, predominantly developing Asian markets, only a fraction of which directly intersect with the

U.S. biofuels industry.

Specific Conclusions: Likely Future Effects

EISA requires the EPA to also examine the “likely future” effects of the RFS Program, which for
this report is interpreted out to roughly 2025, presuming current likely future technologies, rates of market
penetration, current policy, and market dynamics. The likely future effects from the RFS Program were
published in the Final Set Rule for 2023-2025 (docket # EPA-HQ-OAR-2021-0427) and projected an
increase in 2025 due to the RFS Program over the baseline (with no RFS Program) of 3.9 billion gallons
(Chapter 6, Table 6.12). This increase in 2025 from the RFS Program is primarily from increases in
biodiesel and renewable diesel from soybean oil (+1.5 billion gallons), increases in cellulosic biofuel

from CNG-LNG biogas (+932 million gallons), and increases in corn ethanol (+787 million gallons).

'8 See the docket #EPA-HQ-OAR-2021-0427 and the EPA workshop on GHG modeling
(https://www.epa.gov/renewable-fuel-standard-program/workshop-biofuel-greenhouse-gas-modeling) for additional
information.
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Domestic production and consumption of other biofuels are expected to change fairly little by
comparison. These estimated effects in 2025 from the RFS Program are different from the trends through
time from 2022 to 2025. Though highly uncertain, EPA determined in its ESA biological evaluation for
the Set Rule that the RFS-attributable volumes could potentially lead to an increase of up to 2.65 million
acres of cropland by 2025. While the projected cropland expansion for 2023-2025 is slightly larger than
the estimated historical cropland expansion from the RFS Program (2.65 versus 1.9 million acres), there
is uncertainty whether any particular area will be impacted, due to the numerous layers of uncertainty
between the finalized RFS annual volumes and on-the-ground, localized land use changes. Other sources
of uncertainty also remain, including ongoing recovery from the global COVID-19 pandemic, uncertainty
in the penetration of E15 in the marketplace, uncertain growth of cellulosic ethanol production from
agricultural or marginal lands, and complex transportation market dynamics, among other factors
[Chapter 2, section 2.3.2; Chapter 6, section 6.5]. As policy and market conditions change, so may the

factors to consider and the estimate of the likely future effects of the RFS Program.

Uncertainties and Limitations

Although much information is presented in this report on the impacts to date and likely future
impacts from the RFS Program, there are many uncertainties and limitations that remain. These come in
many forms, including data limitations, modeling limitations, and other sources of uncertainty. Data and
modeling limitations are numerous and include a current inability to link RFS-attributable biofuels to
specific areas, as well as a lack of detailed data through time (e.g., annually) and space (e.g., county-level
or smaller) on many practices such as conservation tillage, cover crops, pesticide application rates, and
others. Other data limitations include a lack of data to track crops from the farm to the biorefinery, which
often travel through an intermediary (e.g., a grain elevator or crusher). Another central limitation is the
inherent difficulty of using remote sensing data to correctly assign grass-covered land to the correct land
use (e.g., pasture, CRP, grassland, idle), as well as the various and often inconsistent definitions of
different land covers among available datasets and publications. The models available also have important
limitations, including a lack of industry detail both domestically and abroad, a lack of contributing biofuel
and agricultural policies in other countries in driving biofuel production around the world, and a lack of
examination of many biofuels that are actually emerging as opposed to the biofuels that were anticipated
to emerge following EISA (e.g., cellulosic biofuels on marginal lands). There are other limitations as
well, including the inherent challenges of projecting into the future. Notwithstanding these significant
uncertainties and limitations, this report makes significant progress towards a better understanding of the
impacts to date and likely future impacts of the RFS Program to a broad range of environmental and

resource conservation issues.
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Recommendations

Additional research is needed to link the quantities of biofuels estimated attributable to the
RFS Program in this report to specific local changes in land cover and land management.
This linkage would enable more explicit quantification of the impacts to date of the RFS
Program and facilitate informed assessments of the likely future effects of the RFS Program.
Conservation practices exist to offset many of the environmental effects from the cultivation
of conventional biofuel feedstocks (e.g., corn, soybean) and agricultural effects more
generally; and, while some of these have been widely adopted (e.g., conservation tillage),
some have not (e.g., cover crops). A sustained effort to deploy these practices across a wider
area, especially in areas of recent cropland expansion may be needed to offset the potential
negative effects from the RFS Program specifically and biofuels more generally.

Additional research is needed to better understand the several other complex uncertainties
that remain, including the effects from the RFS Program on biofuels other than corn ethanol,
the potential for palm oil and other low-cost oils to “backfill” soybean oil diverted toward
biofuels, improvements in the skill of many remote-sensing datasets in quantifying grassland
conversion, better data on where and which conservation practices are in place across the
landscape, and others discussed above and in more detail throughout this report.

More research overall on the environmental effects from the emerging biofuels is needed
given that the mix of emerging biofuels may not have the same effects as the biofuels that

were historically dominant.
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