NORMA Oficial Mexicana NOM-008-SCFI-2002, Sistema General de Unidades de Medida.

Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Secretaría de Economía.

La Secretaría de Economía, por conducto de la Dirección General de Normas, con fundamento en los artículos 34 fracciones XIII y XXX de la Ley Orgánica de la Administración Pública Federal; 39 fracción V, 40 fracción IV, 47 fracción IV de la Ley Federal sobre Metrología y Normalización, y 23 fracciones I y XV del Reglamento Interior de esta Secretaría, y

CONSIDERANDO

Que es responsabilidad del Gobierno Federal procurar las medidas que sean necesarias para garantizar que los instrumentos de medición que se comercialicen en territorio nacional sean seguros y exactos, con el propósito de que presten un servicio adecuado conforme a sus cualidades metrológicas, y aseguren la exactitud de las mediciones que se realicen en las transacciones comerciales;

Que con fecha 25 de agosto de 2000, el Comité Consultivo Nacional de Normalización de Seguridad al Usuario, Información Comercial y Prácticas de Comercio, aprobó la publicación del Proyecto de Norma Oficial Mexicana PROY-NOM-008-SCFI-2000, Sistema general de unidades de medida, lo cual se realizó en el **Diario Oficial de la Federación** el 23 de mayo de 2001, con objeto de que los interesados presentaran sus comentarios:

Que durante el plazo de 60 días naturales contados a partir de la fecha de publicación de dicho proyecto de norma oficial mexicana, la Manifestación de Impacto Regulatorio a que se refiere el artículo 45 de la Ley Federal sobre Metrología y Normalización estuvo a disposición del público en general para su consulta; y que dentro del mismo plazo, los interesados presentaron sus comentarios al proyecto de norma, los cuales fueron analizados por el citado Comité Consultivo, realizándose las modificaciones procedentes;

Que con fecha 20 de marzo de 2002, el Comité Consultivo Nacional de Normalización de Seguridad al Usuario, Información Comercial y Prácticas de Comercio, aprobó por unanimidad la norma referida;

Que la Ley Federal sobre Metrología y Normalización establece que las normas oficiales mexicanas se constituyen como el instrumento idóneo para la protección de los intereses del consumidor, se expide la siguiente: Norma Oficial Mexicana NOM-008-SCFI-2002, Sistema general de unidades de medida.

México, D.F., a 24 de octubre de 2002.- El Director General de Normas, **Miguel Aguilar Romo**.- Rúbrica.

NORMA OFICIAL MEXICANA NOM-008-SCFI-2002, SISTEMA GENERAL DE UNIDADES DE MEDIDA GENERAL SYSTEM OF UNITS

PREFACIO

En la elaboración de esta Norma Oficial Mexicana participaron las siguientes instituciones, organismos y empresas:

- ASOCIACION DE NORMALIZACION Y CERTIFICACION, A.C. (ANCE)
- ASOCIACION MEXICANA DE ALMACENES GENERALES DE DEPOSITO (AMAGDE)
- CAMARA NACIONAL DE LA INDUSTRIA ELECTRONICA, TELECOMUNICACIONES E INFORMATICA
- CENTRO DE ESTUDIOS TECNOLOGICOS, Industrial y de Servicios No. 26
- CENTRO NACIONAL DE METROLOGIA (CENAM)

Laboratorio de Pruebas de Equipos y Materiales

- COMISION FEDERAL DE ELECTRICIDAD
 - COMITE CONSULTIVO NACIONAL DE NORMALIZACION DE PREVENCION Y CONTROL DE ENFERMEDADES
- COMITE TECNICO DE NORMALIZACION NACIONAL DE METROLOGIA

- DIRECCION GENERAL DE MARINA MERCANTE
- ESCUELA NACIONAL PREPARATORIA

Plantel No. 3 "Justo Sierra"

- INSTITUTO MEXICANO DE NORMALIZACION Y CERTIFICACION, A.C.
- INSTITUTO NACIONAL DE INVESTIGACIONES NUCLEARES
- INSTITUTO NACIONAL DE NORMALIZACION TEXTIL, A.C.
- INSTITUTO POLITECNICO NACIONAL

Escuela Superior de Ingeniería y Arquitectura, Unidad Tecamachalco

Coordinación de Metrología, Normas y Calidad Industrial

Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Azcapotzalco

- NORMALIZACION Y CERTIFICACION ELECTRONICA, A.C.
- PETROLEOS MEXICANOS

Comité de Normalización de Petróleos Mexicanos y Organismos Subsidiarios

- PROCURADURIA FEDERAL DEL CONSUMIDOR
- SECRETARIA DEL MEDIO AMBIENTE Y RECURSOS NATURALES

Subsecretaría de Recursos Naturales

Instituto Nacional de Ecología

Comisión Nacional del Agua

- SECRETARIA DE COMUNICACIONES Y TRANSPORTES

Dirección General de Política de Telecomunicaciones

- SECRETARIA DE AGRICULTURA, GANADERIA Y DESARROLLO RURAL

Dirección General de Sanidad Vegetal

Dirección General de Sanidad Animal

- SUNBEAM MEXICANA, S.A. DE C.V.

Indice del contenido

- 0. Introducción
- 1. Objetivo y campo de aplicación
- 2. Referencias
- 3. Definiciones fundamentales
- **4.** Tablas de unidades
- 5. Unidades que no pertenecen al SI
- 6. Prefijos
- 7. Reglas generales para la escritura de los símbolos de las unidades del SI
- 8 Reglas para la escritura de los números y su signo decimal

Tabla 1 Nombres, símbolos y definiciones de las unidades SI de base

Tabla 2 Nombres de las magnitudes, símbolos y definiciones de las unidades SI derivadas

- Tabla 3 Ejemplo de unidades SI derivadas sin nombre especial
- Tabla 4 Unidades SI derivadas que tienen nombre y símbolo especial
- Tabla 5 Ejemplos de unidades SI derivadas expresadas por medio de nombres especiales
- Tabla 6 Principales magnitudes y unidades de espacio y tiempo
- Tabla 7 Principales magnitudes y unidades de fenómenos periódicos y conexos
- Tabla 8 Principales magnitudes y unidades de mecánica
- Tabla 9 Principales magnitudes y unidades de calor
- Tabla 10 Principales magnitudes y unidades de electricidad y magnetismo
- Tabla 11 Principales magnitudes y unidades de luz y radiaciones electromagnéticas
- Tabla 12 Principales magnitudes y unidades de acústica
- Tabla 13 Principales magnitudes y unidades de físico-química y física molecular
- Anexo A Nombres y símbolos de los elementos químicos
- Anexo B Símbolos de los elementos químicos y de los núclidos
- Anexo C pH
- Tabla 14 Principales magnitudes y unidades de física atómica y física nuclear
- Tabla 15 Principales magnitudes y unidades de reacciones nucleares y radiaciones ionizantes
- Tabla 16 Unidades que no pertenecen al SI, que se conservan para usarse con el SI
- Tabla 17 Unidades que no pertenecen al SI que pueden usarse temporalmente con el SI
- Tabla 18 Ejemplos de unidades que no deben utilizarse
- Tabla 19 Prefijos para formar múltiplos y submúltiplos
- Tabla 20 Reglas generales para la escritura de los símbolos de las unidades del SI
- Tabla 21 Reglas para la escritura de los números y su signo decimal
- Vigilancia
- 10. Bibliografía
- 11. Concordancia con normas internacionales

NORMA OFICIAL MEXICANA NOM-008-SCFI-2002, SISTEMA GENERAL DE UNIDADES DE MEDIDA

0. Introducción

Esta Norma Oficial Mexicana tiene como propósito establecer un lenguaje común que responda a las exigencias actuales de las actividades científicas, tecnológicas, educativas, industriales y comerciales, al alcance de todos los sectores del país.

La elaboración de esta Norma Oficial Mexicana se basó principalmente en las resoluciones y acuerdos que sobre el Sistema Internacional de Unidades (SI) se han tenido en la Conferencia General de Pesas y Medidas (CGPM), hasta su 22a. Convención realizada en el año 2003.

[Modificación publicada en el DOF el 24 de septiembre de 2009]

El "SI" es el primer sistema de unidades de medición compatible, esencialmente completo y armonizado internacionalmente, está fundamentado en 7 unidades de base, cuya materialización y reproducción objetiva de los patrones correspondientes, facilita a todas las naciones que lo adopten para la estructuración de sus sistemas metrológicos a los más altos niveles de exactitud. Además, al

compararlo con otros sistemas de unidades, se manifiestan otras ventajas entre las que se encuentran la facilidad de su aprendizaje y la simplificación en la formación de las unidades derivadas.

1. Objetivo y campo de aplicación

Esta Norma Oficial Mexicana establece las definiciones, símbolos y reglas de escritura de las unidades del Sistema Internacional de Unidades (SI) y otras unidades fuera de este Sistema que acepte la CGPM, que en conjunto, constituyen el Sistema General de Unidades de Medida, utilizado en los diferentes campos de la ciencia, la tecnología, la industria, la educación y el comercio.

2. Referencias

Para la correcta aplicación de esta Norma se debe consultar la siguiente norma mexicana vigente o la que la sustituya

NMX-Z-055-1997:IMNC

Metrología-Vocabulario de términos fundamentales generales, Declaratoria de vigencia publicada en el **Diario Oficial de la Federación** el día 17 de enero de 1997.

3. Definiciones fundamentales

Para los efectos de esta Norma, se aplican las definiciones contenidas en la norma referida en el inciso 2, Referencias, y las siguientes:

3.1 Sistema Internacional de Unidades (SI)

Sistema coherente de unidades adoptado por la Conferencia General de Pesas y Medidas (CGPM).

Este sistema está compuesto por:

- unidades SI de base:
- unidades SI derivadas.

3.2 Unidades SI de base

Unidades de medida de las magnitudes de base del Sistema Internacional de Unidades.

3.3 Magnitud

Atributo de un fenómeno, cuerpo o sustancia que es susceptible a ser distinguido cualitativamente y determinado cuantitativamente.

3.4 Sistema coherente de unidades (de medida)

Sistema de unidades compuesto por un conjunto de unidades de base y de unidades derivadas compatibles.

3.5 Magnitudes de base

Son magnitudes que dentro de un "sistema de magnitudes" se aceptan por convención, como independientes unas de otras.

3.6 Unidades SI derivadas

Son unidades que se forman combinando entre sí las unidades de base, o bien, combinando éstas con las unidades derivadas, según expresiones algebraicas que relacionan las magnitudes correspondientes de acuerdo a leyes simples de la física.

4. Tablas de unidades

4.1 Unidades SI de base

Las unidades de base del SI son 7, correspondiendo a las siguientes magnitudes: longitud, masa, tiempo, intensidad de corriente eléctrica, temperatura termodinámica, intensidad luminosa y cantidad de

sustancia. Los nombres de las unidades son respectivamente: metro, kilogramo, segundo, ampere, kelvin, candela y mol. Las magnitudes, unidades, símbolos y definiciones se describen en la Tabla 1.

4.2 Unidades SI derivadas

Estas unidades se obtienen a partir de las unidades de base, se expresan utilizando los símbolos matemáticos de multiplicación y división. Se pueden distinguir tres clases de unidades: la primera, la forman aquellas unidades SI derivadas expresadas a partir de unidades de base de las cuales se indican algunos ejemplos en las Tablas 2 y 3; la segunda la forman las unidades SI derivadas que reciben un nombre especial y símbolo particular, la relación completa se cita en la Tabla 4; la tercera la forman las unidades SI derivadas expresadas con nombres especiales, algunos ejemplos de ellas se indican en la Tabla 5.

Existe gran cantidad de unidades derivadas que se emplean en las áreas científicas, para una mayor facilidad de consulta se han agrupado en 10 tablas, correspondiendo a un número equivalente de campos de los más importantes de la física, de acuerdo a la relación siguiente:

Tabla 6	Principales magnitudes y unidades de espacio y tiempo.
Tabla 7	Principales magnitudes y unidades de fenómenos periódicos y conexos.
Tabla 8	Principales magnitudes y unidades de mecánica.
Tabla 9	Principales magnitudes y unidades de calor.
Tabla 10	Principales magnitudes y unidades de electricidad y magnetismo.
Tabla 11	Principales magnitudes y unidades de luz y radiaciones electromagnéticas.
Tabla 12	Principales magnitudes y unidades de acústica.
Tabla 13	Principales magnitudes y unidades de físico-química y física molecular.
Tabla 14	Principales magnitudes y unidades de física atómica y física nuclear.
Tabla 15	Principales magnitudes y unidades de reacciones nucleares y radiaciones ionizantes.

Nota sobre las unidades de dimensión 1 (uno)

La unidad coherente de cualquier magnitud adimensional es el número 1 (uno), cuando se expresa el valor de dicha magnitud, la unidad 1 (uno) generalmente no se escribe en forma explícita.

No deben utilizarse prefijos para formar múltiplos o submúltiplos de la unidad, en lugar de prefijos deben usarse potencias de 10.

5. Unidades que no pertenecen al SI

Existen algunas unidades que no pertenecen al SI, por ser de uso común, la CGPM las ha clasificado en tres categorías:

- unidades que se conservan para usarse con el SI;
- unidades que pueden usarse temporalmente con el SI, y
- unidades que no deben utilizarse con el SI.

5.1 Unidades que se conservan para usarse con el SI

Son unidades de amplio uso, por lo que se considera apropiado conservarlas; sin embargo, se recomienda no combinarlas con las unidades del SI para no perder las ventajas de la coherencia, la relación de estas unidades se establece en la Tabla 16.

5.2 Unidades que pueden usarse temporalmente con el SI

Son unidades cuyo empleo debe evitarse, se mantienen temporalmente en virtud de su gran uso actual, pero se recomienda no emplearlas conjuntamente con las unidades SI, la relación de estas unidades se establece en la Tabla 17.

5.3 Unidades que no deben utilizarse con el SI

Existen otras unidades que no pertenecen al SI; actualmente tienen cierto uso, algunas de ellas derivadas del sistema CGS, dichas unidades no corresponden a ninguna de las categorías antes mencionadas en esta Norma, por lo que no deben utilizarse en virtud de que hacen perder la coherencia del SI; se recomienda utilizar en su lugar las unidades respectivas del SI. En la Tabla 18 se dan algunos ejemplos de estas unidades.

6. Prefijos

La Tabla 19 contiene la relación de los nombres y los símbolos de los prefijos para formar los múltiplos y submúltiplos decimales de las unidades, cubriendo un intervalo que va desde 10⁻²⁴ a 10²⁴.

7. Reglas generales para la escritura de los símbolos de las unidades del SI

Las reglas para la escritura apropiada de los símbolos de las unidades y de los prefijos, se establecen en la Tabla 20.

8. Reglas para la escritura de los números y su signo decimal

La Tabla 21 contiene estas reglas de acuerdo con las recomendaciones de la Organización Internacional de Normalización (ISO).

Tabla 1.- Nombres, símbolos y definiciones de las unidades SI de base

Magnitud	Unidad	Símbolo	Definición
longitud	metro	m	Es la longitud de la trayectoria recorrida por la luz en el vacío durante un intervalo de tiempo de 1/299 792 458 de segundo [17a. CGPM (1983) Resolución 1]
masa	kilogramo	kg	Es la masa igual a la del prototipo internacional del kilogramo [1a. y 3a. CGPM (1889 y 1901)]
tiempo	segundo	S	Es la duración de 9 192 631 770 períodos de la radiación correspondiente a la transición entre los dos niveles hiperfinos del estado fundamental del átomo de cesio 133 [13a. CGPM (1967), Resolución 1]
corriente eléctrica	ampere	A	Es la intensidad de una corriente constante que mantenida en dos conductores paralelos rectilíneos de longitud infinita, cuya área de sección circular es despreciable, colocados a un metro de distancia entre sí, en el vacío, producirá entre estos conductores una fuerza igual a 2x10 ⁻⁷ newton por metro de longitud [9a. CGPM, (1948), Resolución 2]
temperatura termodinámica	kelvin	К	Es la fracción 1/273,16 de la temperatura termodinámica del punto triple del agua [13a. CGPM (1967) Resolución 4]
cantidad de sustancia	mol	mol	Es la cantidad de sustancia que contiene tantas entidades elementales como existan átomos en 0,012 kg de carbono 12 [14a. CGPM (1971), Resolución 3]

intensidad Iuminosa	candela	cd	Es la intensidad luminosa en una dirección dada de una fuente que emite una radiación monocromática de frecuencia 540x10 ¹² hertz y cuya intensidad energética en esa dirección es 1/683 watt por esterradián [16a. CGPM (1979), Resolución 3]
------------------------	---------	----	---

Tabla 2.- Nombres de las magnitudes, símbolos y definiciones de las unidades SI derivadas

Magnitud	Unidad	Símbolo	Definición
ángulo plano	radián	rad	Es el ángulo plano comprendido entre dos radios de un círculo, y que interceptan sobre la circunferencia de este círculo un arco de longitud igual a la del radio (ISO-31/1)
ángulo sólido	esterradián	sr	Es el ángulo sólido que tiene su vértice en el centro de una esfera, y, que intercepta sobre la superficie de esta esfera una área igual a la de un cuadrado que tiene por lado el radio de la esfera (ISO-31/1)

Tabla 3.- Ejemplo de unidades SI derivadas sin nombre especial

Magnitud	Unidades SI		
	Nombre	Símbolo	
superficie	metro cuadrado	m²	
volumen	metro cúbico	m ³	
velocidad	metro por segundo	m/s	
aceleración	metro por segundo cuadrado	m/s ²	
número de ondas	metro a la menos uno	m-1	
masa volúmica, densidad	kilogramo por metro cúbico	kg/m³	
volumen específico	metro cúbico por kilogramo	m³/kg	
densidad de corriente	ampere por metro cuadrado	A/m ²	
intensidad de campo eléctrico	ampere por metro	A/m	
concentración (de cantidad de sustancia)	mol por metro cúbico	mol/m ³	
luminancia	candela por metro cuadrado	cd/m ²	

Tabla 4.- Unidades SI derivadas que tienen nombre y símbolo especial

Magnitud	Nombre de la unidad SI derivada	Símbolo	Expresión en unidades SI de base	Expresión en otras unidades
frecuencia	hertz	Hz	s ⁻¹	
fuerza	newton	N	m·kg·s ⁻²	
presión, tensión mecánica	pascal	Pa	m ⁻¹ ⋅kg⋅s ⁻²	N/m ²
trabajo, energía, cantidad de calor	joule	J	m² ⋅kg⋅s-²	N∙m

Miercoles 27 de noviembre de 2002	DIAKIO OF	ICIAL	(11)	imera Seccion) 8
potencia, flujo energético	watt	W	m ² ·kg·s ⁻³	J/s
carga eléctrica, cantidad de electricidad	coulomb	С	s-A	
diferencia de potencial, tensión eléctrica, potencial eléctrico, fuerza electromotriz	volt	V	m ² ·kg·s ⁻³ ·A ⁻¹	W/A
capacitancia	farad	F	m ⁻² ·kg ⁻¹ ·s ³ ·A ²	C/V
resistencia eléctrica	ohm		m²-kg-s-³-A-2	V/A
conductancia eléctrica	siemens	S	$m^{-2} \cdot kg^{-1} \cdot s^3 \cdot A^2$	A/V
flujo magnético ¹	weber	Wb	$m^2 \cdot kg \cdot s^{-2} \cdot A^{-1}$	V·s
inducción magnética ²	tesla	Т	kg ⋅ s ⁻² ⋅ A ⁻¹	Wb/m ²
Inductancia	henry	Н	m ²⁻ kg·s ⁻²⁻ A ⁻²	Wb/A
flujo luminoso	lumen	lm	cd · sr	
luminosidad ³	lux	lx	m-2 ·cd·sr	lm/m ²
actividad nuclear	becquerel	Bq	s ⁻¹	
dosis absorbida	gray	Gy	m ² ·s ⁻²	J/kg
temperatura Celsius	grado Celsius	°C		К
dosis equivalente	sievert	Sv	m²⋅s-²	J/kg

¹ También llamado flujo de inducción magnética.

² También llamada densidad de flujo magnético.

³ También llamada iluminación

Tabla 5.- Ejemplos de unidades SI derivadas expresadas por medio de nombres especiales

Magnitud	Unidad SI		Expresión en unidades SI de base
	Nombre	Símbolo	
viscosidad dinámica	pascal segundo	Pa⋅s	m-1 kg · s-1
momento de una fuerza	newton metro	N⋅m	m² · kg · s⁻²
tensión superficial	newton por metro	N/m	kg · s ⁻²
densidad de flujo de calor, irradiancia	watt por metro cuadrado	W/m ²	kg ⋅ s ⁻³
capacidad calorífica, entropía	joule por kelvin	J/K	m² · kg · s-² · K-1
capacidad calorífica específica, entropía específica	joule por kilogramo kelvin	J/(kg·K)	m² ⋅ s-² ⋅ K-1
energía específica	joule por kilogramo	J/kg	m² · s⁻²
conductividad térmica	watt por metro kelvin	W/(m·K)	m ⋅ kg ⋅ s ⁻³ ⋅ K ⁻¹
densidad energética	joule por metro cúbico	J/m ³	m⁻¹ · kg · s⁻²
fuerza del campo eléctrico	volt por metro	V/m	m ⋅ kg ⋅ s ⁻³ ⋅ A ⁻¹
densidad de carga eléctrica	coulomb por metro cúbico	C/m ³	m⁻³ · s · A
densidad de flujo eléctrico	coulomb por metro cuadrado	C/m ²	m⁻² · s · A
permitividad	farad por metro	F/m	m⁻³ · kg⁻¹ · s⁴ · A²
permeabilidad	henry por metro	H/m	m ⋅ kg ⋅ s ⁻² ⋅ A ⁻²
energía molar	joule por mol	J/mol	m² · kg · s⁻² · mol⁻¹
entropía molar, capacidad calorífica molar	joule por mol kelvin	J/(mol⋅K)	m² ⋅ kg ⋅ s-² ⋅ K-¹ ⋅ mol-¹
exposición (rayos x y)	coulomb por kilogramo	C/kg	kg⁻¹ · s · A
rapidez de dosis absorbida	gray por segundo	Gy/s	m² ⋅s ⁻³

Tabla 6.- Principales magnitudes y unidades de espacio y tiempo

Magnitud	Símbolo de la magnitud	Definición de la magnitud	Unidad SI	Símbolo de la unidad SI
ángulo plano	, , , , , etc.	El ángulo comprendido entre dos semirrectas que parten del mismo punto, se define como la relación de la longitud del arco intersectado por estas rectas sobre el círculo (con centro en aquel punto), a la del radio del círculo	radián (véase Tabla 2)	rad
ángulo sólido	Ω	El ángulo sólido de un cono se define como la relación del área cortada sobre una superficie esférica (con su centro en el vértice del cono) al cuadrado de la longitud del radio de la esfera	esterradián (véase Tabla 2)	sr
longitud	I, (L)		metro	m
ancho	b		(véase Tabla 1)	
altura	h			
espesor	d,			
radio	r			
diámetro	d, D			
longitud de trayectoria	S			
área o superficie	A, (S)		metro cuadrado	m ²
volumen	V		metro cúbico	m ³
tiempo, intervalo de tiempo, duración	t		segundo (Véase Tabla 1)	S
velocidad angular		$\omega = \frac{d \phi}{d t}$	radián por segundo	rad/s
aceleración angular		$\alpha = \frac{\text{d}\omega}{\text{d}t}$	radián por segundo al cuadrado	rad/s ²
velocidad	u, v, w, c	$v = \frac{ds}{dt}$	metro por segundo	m/s
aceleración	а	$a = \frac{dv}{dt}$	metro por segundo al cuadrado	m/s ²
aceleración de caída libre, aceleración debida a la gravedad	g	Nota: la aceleración normal de caída libre es: gn = 9,806 65 m/s ² (Conferencia General de Pesas y Medidas 1901)		

Tabla 7.- Magnitudes y unidades de fenómenos periódicos y conexos

Magnitud	Símbolo de la magnitud	Definición de la magnitud	Unidad SI	Símbolo de la unidad SI
periodo, tiempo periódico	Т	Tiempo de un ciclo	segundo	S
constante de tiempo de un magnitud que varía exponencialmente		Tiempo después del cual la magnitud podría alcanzar su límite si se mantiene su velocidad inicial de variación	segundo	S
frecuencia	f, v	f = 1/T	hertz	Hz
frecuencia de rotación ⁽¹⁾	n ⁽¹⁾	Número de revoluciones dividido por el tiempo	segundo recíproco	s ⁻¹
frecuencia angular frecuencia circular, pulsatancia		= 2f	radián por segundo segundo recíproco	rad/s s ⁻¹
longitud de onda		Distancia, en la dirección de propagación de una onda periódica, entre dos puntos en donde, en un instante dado, la diferencia de fase es 2	metro	m
número de onda		$\sigma = 1/\lambda$	metro recíproco	m ⁻¹
número de onda circular	k	k = 2	metro recíproco	m ⁻¹
diferencia de nivel de amplitud, diferencia de nivel de campo	LF	$L_F = In (F^1 / F^2)$ Donde F_1 y F_2 representan dos amplitudes de la misma clase	neper* decibel*	Np* dB*
diferencia de nivel de potencia	L _P	$L_P = 1/2 \ln (P_1 / P_2)$ Donde P_1 y P_2 representan dos potencias		
coeficiente de amortiguamiento		Si una magnitud es una función del tiempo y está determinada por: $ F(t) = Ae^{-\delta \ t} \cos[\ (t - t_0) \] $ Entonces es el coeficiente de amortiguamiento	segundo recíproco	s ⁻¹
decremento logarítmico		Producto del coeficiente de amortiguamiento y el periodo	neper*	Np*
coeficiente de atenuación		Si una magnitud es una función de la distancia x y está dada por: $F(x) = Ae^{-\alpha \chi} \cos[(x - x_0)]$	metro recíproco	m ⁻¹
coeficiente de fase		Entonces es el coeficiente de atenuación y es el coeficiente de fase		
coeficiente de propagación		= + j		

NOTAS:

(1) Para la frecuencia de rotación, también se usan las unidades "revoluciones por minuto" (r/min) y "revoluciones por segundo" (r/s)

- * Estas no son unidades del SI pero se mantienen para usarse con unidades del SI
 - 1 Np es la diferencia de nivel de amplitud cuando ln $(F_1/F_2) = 1$
 - 1 dB es la diferencia de nivel de amplitud cuando 20 lg $(F_1 / F_2) = 1$

Tabla 8.- Magnitudes y unidades de mecánica

Magnitud	Símbolo de la magnitud	Definición de la magnitud	Unidad SI	Símbolo de la unidad SI
masa	m		kilogramo (véase Tabla 1)	kg
densidad (masa volúmica)		Masa dividida por el volumen	kilogramo por metro cúbico	kg/m ³
densidad relativa	d	Relación de la densidad de una sustancia con respecto a la densidad de una sustancia de referencia bajo condiciones que deben ser especificadas para ambas sustancias	uno	1
volumen específico	ν	Volumen dividido por la masa	metro cúbico por kilogramo	m ³ /kg
densidad lineal	I	Masa dividida por la longitud	kilogramo por metro	kg/m
densidad superficial	pa, (ps)	Masa dividida por el área	kilogramo por metro cuadrado	kg/m ²
cantidad de movimiento, momentum	р	Producto de la masa y la velocidad	kilogramo metro por segundo	kgm/s
momento de momentum, momentum angular	L	El momento de momentum de una partícula con respecto a un punto es igual al producto vectorial del radio vector dirigido del punto hacia la partícula, y el momentum de la partícula	kilogramo metro cuadrado por segundo	kgm²/s
momento de inercia (momento dinámico de inercia)	I, J	El momento (dinámico) de inercia de un cuerpo con respecto a un eje, se define como la suma (la integral) de los productos de sus masas elementales, por los cuadrados de las distancias de dichas masas al eje	kilogramo metro cuadrado	kgm ²

fuerza	F	La fuerza resultante aplicada sobre un cuerpo es igual a la razón de cambio del momentum del cuerpo	newton	N
peso	G, (P), (W)	El peso de un cuerpo en un determinado sistema de referencia se define como la fuerza que, aplicada al cuerpo, le proporciona una aceleración igual a la aceleración local de caída libre en ese sistema de referencia		
constante gravitacional	G, (f)	La fuerza gravitacional entre dos partículas es: $F = G \frac{m_1 m_2}{r^2}$ donde r es la distancia entre las partículas, m_1 y m_2 son sus masas y la constante gravitacional es: $G = (6,672\ 59 \pm 0,010)\ x\ 10^{-11}\ Nm^2/kg^2$	newton metro cuadrado por kilogramo cuadrado	Nm ² /kg ²
momento de una fuerza	М	El momento de una fuerza referido a un punto es igual al producto vectorial del radio vector, dirigido desde dicho punto a cualquier otro punto situado sobre la línea de acción de la fuerza, por la fuerza	newton metro	Nm
momento torsional, momento de un par	Т	Suma de los momentos de dos fuerzas de igual magnitud y dirección opuesta que no actúan a lo largo de la misma línea		
presión esfuerzo normal esfuerzo al corte	Р	La fuerza dividida por el área	pascal	Pa
módulo de elasticidad	E	E = /	pascal	Pa
módulo de rigidez, módulo de corte	G	G = /		
módulo de compresión	K	K = -p/		
compresibilidad	х	$x = -\frac{1}{V} \frac{dV}{dp}$	pascal recíproco	Pa ⁻¹

momento segundo axial de área	I _a , (I)	El momento segundo axial de área de una área plana, referido a un eje en el mismo plano, es la suma (integral) de los productos de sus elementos de área y los cuadrados de sus distancias medidas desde el eje	metro a la cuarta potencia	m ⁴
momento segundo polar de área	I _p	El momento segundo polar de área de una área plana con respecto a un punto localizado en el mismo plano, se define como la integral de los productos de sus elementos de área y los cuadrados de las distancias del punto a dichos elementos de área		
módulo de sección	Z, W	El módulo de sección de un área plana o sección con respecto a un eje situado en el mismo plano, se define como el momento segundo axial de área dividido por la distancia desde el eje hasta el punto más lejano de la superficie plana	metro cúbico	m ³
viscosidad dinámica	, ()	$_{xz}$ = (dv_{X} / dz) donde $_{xz}$ es el esfuerzo cortante de un fluido en movimiento con un gradiente de velocidad dv_{x} / dz perpendicular plano de corte	pascal segundo	Pas
viscosidad cinemática		= / donde es la densidad	metro cuadrado por segundo	m ² /s
tensión superficial	,	Se define como la fuerza perpendicular a un elemento de línea en una superficie, dividida por la longitud de dicho elemento de línea	newton por metro	N/m
trabajo	W, (A)	Fuerza multiplicada por el desplazamiento en la dirección de la fuerza	joule	J
energía	E			
energía potencial	E _p , V,			
energía cinética	E_k,T			
potencia	Р	Tasa de transferencia de energía	watt	W
gasto masa, flujo masa	q _m	Masa de materia la cual atraviesa una superficie determinada dividida por el tiempo	kilogramo por segundo	kg/s
gasto volumétrico, flujo volumétrico	q _v	Volumen de materia el cual atraviesa una superficie determinada por el tiempo	metro cúbico por segundo	m ³ /s

Tabla 9.- Magnitudes y unidades de calor

Magnitud	Símbolo de la magnitud	Definición de la magnitud	Unidad SI	Símbolo de la unidad SI
temperatura	T,	La temperatura termodinámica se define según los principios de la	kelvin	К
termodinámica		termodinámica	(véase Tabla 1)	
temperatura Celsius	t,	$t = T - T_0$	grado Celsius	°C
		Donde T _o es fijada convencionalmente como T _o = 273,15 K		
coeficiente de dilatación lineal	α_1	$\alpha\ell = \frac{1}{I}\frac{dI}{dT}$	kelvin recíproco	K ⁻¹
coeficiente de dilatación cúbica	$\alpha_{\sf v}$	$\alpha_{V} = \frac{1}{V} \frac{dV}{dT}$		
coeficiente de presión relativa	α_{p}	$\alpha p = \frac{1}{p} \frac{dp}{dT}$		
coeficiente de presión		= dp/dt	pascal por kelvin	Pa/K
compresibilidad isotérmica	Т	$K_{T} = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_{T}$	pascal recíproco	Pa ⁻¹
compresibilidad isentrópica	S	$\mathbf{K}_{\mathbf{S}} = -\frac{1}{\mathbf{V}} \left(\frac{\partial \mathbf{V}}{\partial \mathbf{p}} \right) \mathbf{s}$		
calor, cantidad de calor	Q		joule	J
flujo térmico		Flujo de calor a través de una superficie	watt	W
densidad de flujo térmico	q,	Flujo térmico dividido por el área considerada	watt por metro cuadrado	W/m ²

conductividad térmica	, (x)	Densidad de flujo térmico dividido por el gradiente de temperatura	watt por metro kelvin	W/(mK)
coeficiente de transferencia de calor	h, k, K,	Densidad de flujo térmico dividido por la diferencia de temperaturas	watt por metro cuadrado kelvin	W/(m ² K)
aislamiento térmico, coeficiente de aislamiento térmico	М	Diferencia de temperaturas dividida por la densidad de flujo térmico	metro cuadrado kelvin por watt	(m ² K)/W
resistencia térmica	R	Diferencia de temperatura dividida por el flujo térmico	kelvin por watt	K/W
difusividad térmica	а	$a = -\frac{\lambda}{\rho c_p}$	metro cuadrado por segundo	m ² /s
		donde: es la conductividad térmica; es la densidad; $c_p \ \text{es la capacidad térmica específica a presión constante}$		
capacidad térmica	С	Cuando la temperatura de un sistema se incremente una cantidad diferencial dT, como resultado de la adición de una pequeña cantidad de calor dQ, la magnitud dQ/dT es la capacidad térmica	joule por kelvin	J/K
capacidad térmica específica	С	Capacidad térmica dividida por la masa	joule por kilogramo kelvin	J/(kgK)
capacidad térmica específica a presión constante	c _p			
capacidad térmica específica a volumen constante	C _V			
capacidad térmica específica a saturación	c _{sat}			

entropía	S	Cuando una cantidad pequeña de calor dQ es recibida por un	joule por kelvin	J/K
еппорта	3	sistema cuya temperatura termodinámica es T, la entropía del	joule por kelvin	J/K
		sistema se incrementa en dQ/T, considerando que ningún cambio		
		irreversible tiene lugar en el sistema		
antranía annaítica	_		iaula nankilannana	1//14 (2/2)
entropía específica	S	Entropía dividida por la masa	joule por kilogramo	J/(kgK)
			kelvin	
energía interna	U, (E)		joule	J
entalpía	H, (I)	H = U + pV		
energía libre Helmholtz,	A, F	A = U - TS		
función Helmholtz				
energía libre Gibbs,	G	G = U + pV -TS		
función Gibbs		G = H - TS		
energía interna	u, (e)	Energía interna dividida por la masa	joule por kilogramo	J/kg
específica				
entalpía específica	h	Entalpía dividida por la masa		
energía libre específica	a, f	Energía libre Helmholtz dividida por la masa		
Helmholtz, función				
específica Helmholtz				
energía libre específica	g	Energía libre Gibbs dividida por la masa		
Gibbs, función específica				
Gibbs				
función Massieu	J	J = - A/T	joule por kelvin	J/K
función Planck	Υ	Y = - G/T	joule por kelvin	J/K

Tabla 10. - Magnitudes y unidades de electricidad y magnetismo

Magnitud	Símbolo de la magnitud	Definición de la magnitud	Unidad SI	Símbolo de la unidad SI
corriente eléctrica	I		ampere (ver tabla 1)	A
carga eléctrica, cantidad de electricidad	Q	Integral de la corriente eléctrica con respecto al tiempo	coulomb	С
densidad de carga densidad volumétrica de carga	, ()	Carga dividida por el volumen	coulomb por metro cúbico	C/m ³
densidad superficial de carga		Carga dividida por el área superficial	coulomb por metro cuadrado	C/m ²
intensidad de campo eléctrico	E, (K)	Fuerza ejercida por un campo eléctrico sobre una carga eléctrica puntual, dividida por el valor de la carga	volt por metro	V/m
potencial eléctrico	V,	Para campos electrostáticos, una magnitud escalar, en la cual el gradiente tiene signo contrario y es igual al valor de la intensidad de campo eléctrico E = - grad V	volt	V
diferencia de potencial, tensión eléctrica	U, (V)	La tensión entre dos puntos 1 y 2 es la integral de línea desde el punto 1 hasta el punto 2 de la intensidad de campo eléctrico $\phi_1 - \phi_2 = \int_1^2 E_s ds$		
fuerza electromotriz	E	La fuerza electromotriz de una fuente es la energía suministrada por la fuente dividida por la carga eléctrica que pasa a través de la fuente		
densidad de flujo eléctrico, desplazamiento	D	La densidad de flujo eléctrico es una magnitud vectorial, cuya divergencia es igual a la densidad de la carga	coulomb por metro cuadrado	C/m ²
flujo eléctrico (flujo de desplazamiento)		El flujo eléctrico a través de un elemento de superficie es el producto escalar del elemento de superficie y la densidad de flujo eléctrico	coulomb	С
capacitancia	С	Carga dividida por la diferencia de potencial eléctrico	farad	F
permitividad		Densidad de flujo eléctrico dividido por la intensidad de campo eléctrico	farad por metro	F/m
permitividad del vacío,	0	$0 = 1 / (\mu_0 c_0^2)$		
constante eléctrica		$_0 = 8,854 \ 187 \ 817 \ x \ 10^{-12} \ F/m$		
permitividad relativa	T	T = / 0	uno	1
susceptibilidad eléctrica	, e	= _T -1	uno	1

polarización eléctrica	Р	P = D - ₀ E	coulomb por metro cuadrado	C/m ²
momento dipolo eléctrico	p, (pe)	El momento dipolo eléctrico es una magnitud vectorial, cuyo producto vectorial con la intensidad de campo eléctrico es igual al momento torsional	coulomb metro	Cm
densidad de corriente	J, (S)	Es una magnitud vectorial cuya integral evaluada para una superficie especificada, es igual a la corriente total que circula a través de dicha superficie	ampere por metro cuadrado	A/m ²
densidad lineal de corriente	A, ()	Corriente dividida por el espesor de la placa conductora	ampere por metro	A/m
intensidad de campo magnético	Н	La intensidad de campo magnético es una magnitud vectorial axial cuya rotacional es igual a la densidad de corriente, incluyendo a la corriente de desplazamiento	ampere por metro	A/m
diferencia de potencial magnético	U _m	La diferencia de potencial magnético entre el punto y el punto 2 es igual a la integral de línea, desde el punto 1 hasta punto 2 de la intensidad de campo magnético a lo largo de su trayectoria.	ampere	А
fuerza magnetomotriz	F, F _m	F = ∮H • dr		
corriente totalizada		Corriente eléctrica neta de conducción neta a través de un bucle cerrado		
densidad de flujo magnético, inducción magnética	В	La densidad de flujo magnético es una magnitud vectorial axial tal que la fuerza ejercida sobre un elemento de corriente, es igual al producto vectorial de este elemento y la densidad de flujo magnético	tesla	Т
flujo magnético		El flujo magnético que atraviesa un elemento de superficie es igual al producto escalar del elemento de superficie y la densidad de flujo magnético	weber	Wb
potencial vectorial magnético	А	El potencial vectorial magnético es una magnitud vectorial, cuya rotacional es igual a la densidad de flujo magnético	weber por metro	Wb/m

autoinductancia	L	En una espiral conductora, es igual al flujo magnético de la espiral, causada por la corriente que circula a través de ella, dividido por esa corriente	henry	Н
inductancia mutua	M, L ₁₂	En dos espirales conductoras es el flujo magnético a través de una espiral producido por la corriente circulante en la otra espiral dividido por el valor de esta corriente		
coeficiente de acoplamiento	k, (x)	$k = \frac{ L_{12} }{\sqrt{L_{12}}}$ $= 1 - k^2$	uno	1
coeficiente de dispersión permeabilidad		Densidad de flujo magnético, dividida por la intensidad de campo	henry por metro	H/m
permeabilidad		magnético	nemy por meno	1 1/111
permeabilidad del vacío,	0	$_{0} = 4 \times 10^{-7} \text{ H/m}$		
constante magnética		₀ = (12,566 370 614) x 10 ⁻⁷ H/m		
permeabilidad relativa	r	r = / ₀	uno	1
susceptibilidad magnética	x, (_m)	x = r - 1	uno	1
momento	m	El momento electromagnético es una magnitud vectorial, cuyo	ampere metro	Am ²
electromagnético (momento magnético)		producto vectorial con la densidad del flujo magnético es igual al momento torsional	cuadrado	
magnetización	M, (H _j)	$M = (B/\mu_0) - H$	ampere por metro	A/m
polarización magnética	J, (B _j)	$J = B - {}_{0}H$	tesla	Т
densidad de energía electromagnética	W	Energía del campo electromagnético dividida por el volumen	joule por metro cúbico	J/m ³
vector de Poynting	S	El vector de Poynting es igual al producto vectorial de la intensidad de campo eléctrico y la intensidad de campo magnético	watt por metro cuadrado	W/m ²

velocidad de	Co	1	metro por segundo	m/s
propagación de ondas	00	$c_{o} = \frac{1}{\sqrt{\varepsilon_{o}\mu_{o}}}$	metro por segundo	11//3
electromagnéticas en el		V V V		
vacío		c _o = 299 792 458 m/s		
resistencia (a la corriente continua)	R	La diferencia de potencial eléctrico dividida por la corriente, cuando no existe fuerza electromotriz en el conductor	ohm	
conductancia (a la corriente continua)	G	G = 1/R	siemens	S
potencia (a la corriente continua)	Р	P = UI	watt	W
resistividad		Intensidad de campo eléctrico dividido por la densidad de corriente cuando no existe fuerza electromotriz dentro del conductor	ohm metro	m
conductividad	,	= 1/ el símbolo se utiliza en electroquímica	siemens por metro	S/m
reluctancia	R, R _m	Diferencia de potencial magnético dividido por el flujo magnético	henry a la menos uno	H ⁻¹
permeancia	, (P)	= 1/ R _m	henry	Н
diferencia de fase		Cuando u = u _m cos t e i = i _m cos (t-)	radián	rad
desplazamiento de fase		es el desplazamiento de fase	uno	1
impedancia, (impedancia compleja)	Z	La representación compleja de la diferencia de potencial, dividida por la representación compleja de la corriente	ohm	
módulo de impedancia (impedancia)	IZI	$ Z = \sqrt{R^2 + X^2}$		
reactancia	X	Parte imaginaria de la impedancia $X = \omega L - \frac{1}{\omega C}$	ohm	

resistencia	R	La diferencia de potencial eléctrico dividido por la corriente, cuando no		
		haya fuerza electromotriz en el conductor		
		(véase resistencia a la corriente continua)		
resistencia (en corriente alterna)	R	Parte real de la impedancia		
factor de calidad	Q	Para un sistema no radiante si Z = R + jX	uno	1
		entonces: Q = IXI / R		
admitancia (admitancia compleja)	Υ	Y = 1/ Z	siemens	S
módulo de admitancia (admitancia)	IYI	$IYI = \sqrt{G^2 + B^2}$		
susceptancia	В	Parte imaginaria de la admitancia		
conductancia	G	Parte real de la admitancia (véase conductancia a la corriente continua)		
potencia activa o	Р	Producto de la corriente y la diferencia de potencial	watt	W
potencia instantánea		$P = \frac{1}{T} \int_{0}^{T} uidt$		
		Cuando:		
		$u = u_m \cos t = \sqrt{2} U \cos t e$		
		$i = i_{m} \cos(t -) = \sqrt{2} I \cos(t -)$		
		se tiene que:		
		iu, es la potencia instantánea (símbolo p)		
		IU cos , es la potencia activa (símbolo P)		
potencia aparente	S (P _S)	IU es la potencia aparente	voltampere	VA
potencia reactiva	Q (Pq)	IU sen es la potencia reactiva	var	var
factor de potencia	λ	El nombre "factor de potencia" (símbolo λ) se usa para la relación P/S	uno	1

Tabla 11.- Magnitudes y unidades de luz y radiaciones electromagnéticas

Magnitud	Símbolo de la magnitud	Definición de la magnitud	Unidad SI	Símbolo de la unidad SI
frecuencia	f, v	Número de ciclos dividido por el tiempo	hertz	Hz
frecuencia circular		= 2f	segundo recíproco	s ⁻¹
longitud de onda		La distancia en la dirección de propagación de una onda periódica entre dos puntos sucesivos cuya fase es la misma	metro	m
número de onda		= 1/	metro recíproco	m ⁻¹
número de onda circular	k	k = 2		
velocidad de propagación de ondas electromagnéticas en el vacío	C, C ₀	c = 299 792 458 m/s	metro por segundo	m/s
energía radiante	Q, W (U, Q _e)	Energía emitida, transferida o recibida como radiación	joule	J
densidad de energía radiante	w, (u)	Energía radiante en un elemento de volumen, dividido por ese elemento	joule por metro cúbico	J/m ³
concentración espectral de densidad de energía radiante (en términos de longitud de onda)	w	La densidad de energía radiante en un intervalo infinitesimal de longitud de onda, dividido por el alcance de ese intervalo	joule por metro a la cuarta potencia	J/m ⁴
potencia radiante, flujo de energía radiante	P, , (_e)	Potencia emitida, transferida o recibida como radiación	watt	W
densidad de flujo radiante, razón de flujo de energía radiante	,	En un punto en el espacio, el flujo de energía radiante incidente sobre una esfera pequeña, dividida por el área de la sección transversal de esa esfera	watt por metro cuadrado	W/m²
intensidad radiante	I, (I _e)	Para una fuente en una dirección determinada, la potencia radiante que fluye hacia el exterior de la fuente o un elemento de la fuente, en un elemento de ángulo sólido que contenga a la dirección dada, dividida por dicho elemento de ángulo sólido	watt por esterradián	W/sr
radiancia	L, (L _e)	En un punto de una superficie y en una dirección determinada, la intensidad radiante de un elemento de esa superficie, dividida por el área de la proyección ortogonal de dicho elemento sobre un plano perpendicular a la dirección dada	watt por esterradián metro cuadrado	W/ (srm ²⁾

excitancia radiante	M, (M _e)	En un punto de una superficie, el flujo de energía radiante que fluye hacia el exterior de un elemento de esa superficie, dividido por el área de dicho elemento	watt por metro cuadrado	W/m ²
irradiancia	E, (E _e)	En un punto de una superficie, el flujo de energía radiante que incide sobre un elemento de esa superficie, dividida por el área de dicho elemento	watt por metro cuadrado	W/m ²
constante de Stefan Boltzmann		La constante en la expresión para la excitancia radiante de un radiador total (cuerpo negro), a la temperatura termodinámica T. $M=\sigma\ T^4$	watt por metro cuadrado kelvin a la cuarta potencia	W/ (m ² k ⁴)
primera constante de radiación	c ₁	Las constantes c_1 y c_2 en la expresión para la concentración espectral de la excitancia radiante de un radiador total a la temperatura termodinámica T:	watt metro cuadrado	Wm ²
segunda constante de radiación	c ₂	$M_{\lambda} = c_1 f(\lambda, T) = c_1 \frac{\lambda^{-5}}{\exp(c_2/\lambda T) - 1}$ $c_1 = 2hc^2$	metro kelvin	mK
		$c_1 = 2\pi c^2$ $c_2 = hc / k$		
emisividad		Relación de la excitancia radiante de un radiador térmico a la de un radiador total (cuerpo negro) a la misma temperatura	uno	1
emisividad espectral, emisividad a una longitud de onda específica	()	Relación de la concentración espectral de la excitancia radiante de un radiador térmico a la de un radiador total (cuerpo negro) a la misma temperatura		
emisividad espectral direccional	(, ,)	Relación de la concentración espectral de radiancia en una dirección dada , , de un radiador térmico a la de un radiador total (cuerpo negro) a la misma temperatura		
intensidad luminosa	I, (I _V)		candela	cd
			(véase Tabla 1)	
flujo luminoso	, (_V)	El flujo luminoso d de una fuente de intensidad luminosa I dentro de un elemento de ángulo sólido d es: d = I d	lumen	lm
cantidad de luz	Q, (Q _V)	Integral en función del tiempo del flujo luminoso	lumen segundo	lms

luminancia	L, (L _V)	La luminancia un punto de una superficie y en una dirección dada, se define como la intensidad luminosa de un elemento de esa superficie, dividida por el área de la proyección ortogonal de este elemento sobre un plano perpendicular a la dirección considerada	candela por metro cuadrado	cd/m
excitancia luminosa	M, (M _V)	La excitancia luminosa en un punto de una superficie, se define como el flujo luminoso que fluye hacia el exterior de un elemento de la superficie, dividido por el área de ese elemento	lumen por metro cuadrado	lm/m ²
luminosidad (iluminancia)	E, (E _V)	La luminosidad en un punto de una superficie, se define como el flujo luminoso que incide sobre un elemento de la superficie dividido por el área de ese elemento	lux	lx
exposición de luz	Н	$H = \int Edt$	lux segundo	lxs
eficacia luminosa	К	$K = \frac{\phi_V}{\phi_e}$	lumen por watt	lm/W
eficacia espectral luminosa, eficacia luminosa a una longitud de onda específica	K()	$K(\lambda) = \frac{\phi_{V\lambda}}{\phi_{e\lambda}}$		
eficacia luminosa espectral máxima	K _m	El valor máximo de K()		
eficiencia luminosa	V	$V = \frac{K}{K_{m}}$ $V(\lambda) = \frac{K(\lambda)}{K_{m}}$	uno	1
eficiencia luminosa espectral, eficiencia luminosa a una longitud de onda especificada	V()	$V(\lambda) = \frac{K(\lambda)}{K_{m}}$		
valores triestímulos espectrales CIE	$\overline{\mathbf{x}}(\lambda), \overline{\mathbf{y}}(\lambda), \overline{\mathbf{z}}(\lambda)$	Valores triestímulos de las componentes espectrales de un estímulo equienergético en el sistema tricomático (XYZ). Estas funciones son aplicables a campos observación entre 1° y 4°. En este sistema: $\frac{\text{def}}{y(\lambda)} = V(\lambda)$	uno	1

coordenadas de cromaticidad	x, y, z	Para luz cuya concentración espectral de flujo radiante sea $X = \frac{\int \phi(\lambda) \overline{X}(\lambda) d\lambda}{\int \phi(\lambda) \overline{x}(\lambda) d\lambda + \int \phi(\lambda) \overline{y}(\lambda) d\lambda + \int \phi(\lambda) \overline{z}(\lambda) d\lambda}$ Análogamente se definen expresiones para y y z. Para fuentes de luz ()= $_{e\lambda}$ () / $_{e\lambda}$ (0) (flujo radiante espectral relativo) Para colores de objetos se calcula por uno de los tres productos ϕ (λ) = $\frac{\phi}{\phi} = \frac{\lambda}{\lambda} (\lambda) \times \frac{\lambda}{\lambda} = \frac{\rho}{\lambda} \times \frac{\lambda}{\lambda} = \frac{\rho}{\lambda} \times \frac{\lambda}{\lambda} \times \frac{\lambda}$	uno	1
absorbancia espectral	α()	Relación de las concentraciones espectrales de los flujos radiantes absorbido e incidente	uno	1
reflectancia espectral	()	Relación de las concentraciones espectrales de los flujos radiantes reflejado e incidente		
transmitancia espectral	()	Relación de las concentraciones espectrales de los flujos radiantes transmitido e incidente	uno	1
coeficiente de radiancia espectral	()	El factor de radiancia espectral en un punto de una superficie y en una dirección dada, es el cociente entre las concentraciones espectrales de radiancia de un cuerpo no radiante por sí mismo y de un difusor perfecto, igualmente irradiados		
coeficiente de atenuación lineal, coeficiente de extinción lineal		La disminución relativa en la concentración espectral del flujo luminoso o radiante de un haz colimado de radiación electromagnética al cruzar un medio laminar de espesor infinitesimal, dividida por la longitud atravesada	metro recíproco	m ⁻¹
coeficiente de absorción lineal	а	La parte del coeficiente de atenuación debida a la absorción		
coeficiente de absorción molar	х	x = a / c donde c es la concentración de cantidad de sustancia	metro cuadrado por mol	m ² /mol
índice de refracción	n	El índice de refracción de un medio no absorbente para una radiación electromagnética de frecuencia dada, es la relación entre la velocidad de las ondas (o de la radiación) en el vacío a la velocidad de fase en el medio	uno	1

Tabla 12.- Magnitudes y unidades de acústica

Magnitud	Símbolo de la magnitud	Definición de la magnitud	Unidad SI	Símbolo de la unidad SI
periodo, tiempo periódico	Т	Tiempo de un ciclo	segundo	S
frecuencia	f, v	f = 1 / T	hertz	Hz
intervalo de frecuencia		El intervalo de frecuencia entre dos tonos es el logaritmo de la relación entre la frecuencia más alta y la frecuencia más baja	octava*	
frecuencia angular frecuencia circular, pulsantancia		= 2f	segundo recíproco	s ⁻¹
longitud de onda			metro	m
número de onda circular	k	$k = 2\pi/\lambda = 2\pi\sigma$	metro recíproco	m ⁻¹
		donde $\sigma = 1/\lambda$		
densidad		Masa dividida por el volumen	kilogramo por metro cúbico	kg/m ³
presión estática	Ps	Presión que existiría en ausencia de ondas sonoras	pascal	Pa
presión acústica	p, (pa)	La diferencia entre la presión total instantánea y la presión estática		
desplazamiento de una partícula de sonido	, ()	Desplazamiento instantáneo de una partícula del medio, referido a la posición que ocuparía en ausencia de ondas sonoras	metro	m
velocidad de una partícula de sonido	u, v	u = /t	metro por segundo	m/s
aceleración de una partícula de sonido	а	a = u / t	metro por segundo al cuadrado	m/s ²
gasto volumétrico, velocidad del volumen	q, U	Razón instantánea de flujo de volumen debido a la onda sonora	metro cúbico por segundo	m ³ /s
velocidad del sonido	c, (c _a)	Velocidad de una onda sonora	metro por segundo	m/s
densidad de energía del sonido	w, (w _a), (e)	La energía de sonido promedio en un volumen dado, dividida por dicho volumen	joule por metro cúbico	J/m ³
flujo de energía del sonido, potencia del sonido	P, (Pa)	Energía del sonido transferida en un cierto intervalo de tiempo, dividida por la duración de ese intervalo	watt	W
intensidad del sonido	I, J	Para flujo unidireccional de energía de sonido, el flujo de energía de sonido a través de una superficie normal a la dirección de propagación, dividido por el área de esa superficie	watt por metro cuadrado	W/m ²

^{*}Esta unidad no es del SI pero se acepta temporalmente su uso con el SI

impedancia característica de un medio	Z _C	Para un punto en un medio y una onda progresiva plana, la representación compleja de la presión de sonido dividida por la representación compleja de la velocidad de partícula	pascal segundo por metro	Pas/m
impedancia acústica específica	Z _S	En una superficie, la representación compleja de la presión de sonido dividida por la representación compleja de la velocidad de partícula		
impedancia acústica	Z _a	En una superficie, la representación compleja de la presión de sonido dividida por la representación compleja de la razón de flujo de volumen	pascal segundo por metro cúbico	Pas/m ³
impedancia mecánica	Z _m	La representación compleja de la fuerza total aplicada a una superficie (o a un punto) de un sistema mecánico, dividida por la representación compleja de la velocidad promedio de la partícula en esa superficie (o de la velocidad de la partícula en ese punto) en la dirección de la fuerza	newton segundo por metro	Ns/m
nivel de presión acústica	L _p	$L_p = ln (p/p_0) = ln 10lg (p/p_0)$ donde p es el valor cuadrático medio de la presión acústica y el valor de referencia p_0 es igual a 20 μ Pa	decibel	dB
nivel de potencia	L _W	$L_W = \frac{1}{2} \ln(P/P_0) = \frac{1}{2} \ln 10 \lg(P/P_0)$	decibel	dB
acústica		donde P es el valor cuadrático de la potencia acústica y la potencia de referencia es igual a 1 pW		
coeficiente de amortiguamiento		Si una magnitud es una función del tiempo t, dada por: $F(t) = Ae^{-t} \cdot \cos \left[(t - t_0) \right]$ entonces es el coeficiente de amortiguamiento	segundo recíproco	s ⁻¹
constante de tiempo, tiempo de relajación		= 1 / donde es el coeficiente de amortiguamiento	segundo	S
decrecimiento logarítmico		Producto del coeficiente de amortiguamiento por el periodo	néper	Np
coeficiente de atenuación		Si una magnitud es una función de la distancia x y está dada por: $F() = Ae^- \cos[(x - x_0)]$	metro recíproco	m⁻¹
		entonces es el coeficiente de atenuación y es el coeficiente de fase		
coeficiente de fase			metro recíproco	m ⁻¹
coeficiente de propagación		= + j		

coeficiente de disipación	, ()	Relación entre el flujo de energía acústica disipado y el flujo de energía acústica incidente	uno	1
coeficiente de reflexión	r,	Relación entre el flujo de energía acústica reflejado y el flujo de energía acústica incidente		
coeficiente de transmisión		Relación entre el flujo de energía acústica transmitido y el flujo de energía acústica incidente		
coeficiente de absorción acústica	, (a)	= +		
índice de reducción acústica, pérdida de transmisión acústica	R	R= $\frac{1}{2} \ln(1/) = \frac{1}{2} \ln 10 \lg(1/)$ en donde es el coeficiente de transmisión	decibel	dB
área de absorción equivalente de una superficie u objeto	А	Es el área de una superficie que tiene un coeficiente de absorción igual a 1, y que absorbe la misma potencia en el mismo campo sonoro difuso, considerando los efectos de la difracción como despreciables	metro cuadrado	m ²
tiempo de reverberación	Т	El tiempo que se requiere para que la densidad de energía de sonido promedio dentro de un recinto cerrado disminuya hasta 10 ⁻⁶ veces su valor inicial (o sea 60 dB), después de que la fuente ha dejado de producir ondas sonoras	segundo	S
nivel de sonoridad	L _N	El nivel de sonoridad, en un punto de un campo sonoro, viene definido por: $L_{N} = ln \left(\frac{p_{eff}}{P_{o}} \right)_{1kHz} = ln \ 10 \ \bullet \ lg \left(\frac{P_{eff}}{P_{o}} \right)$	fon*	
		en donde P_{eff} es la presión acústica eficaz (valor cuadrático medio) de un tono puro normalizado de 1 kHz, que un observador normal en condiciones de escucha normalizada juzga igualmente sonoro que el campo considerado, siendo $P_0 = 20\ Pa$		
sonoridad	N	La sonoridad es la estimación auditiva de un observador normal de la relación entre la intensidad del sonido considerado y el de un sonido de referencia que tiene un nivel de sonoridad de 40 fons	son*	

^{*} Estas no son unidades del SI pero se acepta temporalmente su uso.

Tabla 13.- Magnitudes y unidades de físico-química y físico-molecular

Magnitud	Símbolo de la magnitud	Definición de la magnitud	Unidad SI	Símbolo de la unidad SI
cantidad de sustancia	n, (v)		mol	mol
			(véase tabla 1)	
constante de Avogadro	L,N _A	Número de moléculas dividido por la cantidad de sustancia	mol recíproco	mol ⁻¹
		$N_A = N/n = (6,022\ 141\ 99 \pm 0,000\ 000\ 47)\ 10^{23}\ mol^{-1}$		
masa molar	М	Masa dividida por la cantidad de sustancia	kilogramo por mol	kg/mol
volumen molar	V _m	Volumen dividido por la cantidad de sustancia	metro cúbico por mol	m ³ /mol
energía interna molar	U _m	Energía interna dividida por la cantidad de sustancia	joule por mol	J/mol
capacidad térmica molar	C _m	Capacidad térmica dividida por la cantidad de sustancia	joule por mol kelvin	J/(mol·K)
entropía molar	S _m	Entropía dividida por la cantidad de sustancia	joule por mol kelvin	J/(mol·K)
densidad numérica de moléculas	n	El número de moléculas o partículas dividido por el volumen	metro cúbico recíproco	m ⁻³
concentración molecular de la sustancia B	C_{B}	El número de moléculas de la sustancia B dividido por el volumen de la mezcla		
densidad		Masa dividida por el volumen	kilogramo por metro cúbico	kg/m ³
concentración en masa de la sustancia B	В	Masa de la sustancia B dividida por el volumen de la mezcla		
concentración de la sustancia B, concentración de la cantidad de la sustancia del componente B	C _B	Cantidad de sustancia de componente B dividida por el volumen de la mezcla	mol por metro cúbico	mol/m ³

molalidad de la sustancia soluto B	b _B , m _B	La cantidad de sustancia de soluto de la sustancia B en una solución dividida por la masa del solvente	mol por kilogramo	mol/kg
potencial químico de la sustancia B	В	Para una mezcla con sustancias componentes B, C,, $_B=(G/n_B)_T,_{p,n}C,\ldots,$ donde n_B es la cantidad de la sustancia B; y G es la función Gibbs	joule por mol	J/mol
presión parcial de la sustancia B (en una mezcla gaseosa)	РВ	Para una mezcla gaseosa, $p_B = x_B \;\; p$ donde p es la presión	pascal	Pa
fugacidad de la sustancia B (en una mezcla gaseosa)	P _B , f _B	Para una mezcla gaseosa, f _B es proporcional a la actividad absoluta B. El factor de proporcionalidad, que es función únicamente de la temperatura queda determinado por la condición de que a temperatura y composición constantes p _B /p _B tiende a 1 para un gas infinitamente diluido	pascal	Pa
presión osmótica		El exceso de presión que se requiere para mantener el equilibrio osmótico entre una solución y el disolvente puro, separados por una membrana permeable sólo para el disolvente	pascal	Pa
afinidad (de una reacción química)	А	A = -V _B _B	joule por mol	J/mol
masa de una molécula	m		kilogramo	kg
momento dipolo eléctrico de una molécula	,	El momento de dipolo eléctrico de una molécula es una magnitud vectorial cuyo producto vectorial con la intensidad de campo eléctrico es igual al par	coulomb metro	Cm
polarizabilidad eléctrico de una molécula		Momento de dipolo eléctrico inducido dividido por la intensidad de campo eléctrico	coulomb metro cuadrado por volt	Cm ² /V
constante molar de los gases	R	La constante universal de proporcionalidad en la ley de un gas ideal $pV_m = RT$ $R = (8,314\ 472\pm0,000\ 015)\ J/(molK)$	joule por mol kelvin	J/molK
constante de Boltzmann	k	k = R / N _A k = (1,380 650 3 ± 0,000 002 4) 10 ⁻²³ J/K	joule por kelvin	J/K

2	2	
)	2	

trayectoria libre media	Ι,	Para una molécula, la distancia promedio entre dos colisiones sucesivas	metro	m
coeficiente de difusión	D	$C_B \ (v_B) = \text{- D grad } C_B$ donde C_B es la concentración molecular local del constituyente B en la mezcla y (v_B) es la velocidad media local de las moléculas de B	metro cuadrado por segundo	m²/s
coeficiente de difusión térmica	D _T	$D_T = k_T D$	metro cuadrado por segundo	m ² /s
número atómico	Z	Número de protones contenidos en el núcleo de un elemento químico		
carga elemental	е	La carga eléctrica de un protón La carga eléctrica de un electrón es igual a "-e" e = (1,602 176 462 ± 0,000 000 063) 10 ⁻¹⁹ C	coulomb	С
número de carga de un ion, electrovalencia	Z	Coeficiente entre la carga de un ion y la carga elemental	uno	1
constante de Faraday	F	$F = N_A e$ $F = (96 485,341 5 \pm 0,003 9) C/mol$	coulomb por mol	C/mol
fuerza iónica	I	La fuerza iónica de una solución de define como $I=(1/2)\;z_i{}^2m_i$ donde la sumatoria incluye a todos los iones con molalidad m_i	mol por kilogramo	mol/kg
Conductividad electrolítica	Х,	La densidad de corriente electrolítica dividida por la intensidad de campo eléctrico	siemens por metro	S/m

Miércoles 27 de noviembre de 2002 DIARIO OFICIAL	(Primera Sección) 33	
--	----------------------	--

conductividad molar	m	Conductividad dividida por la concentración	siemens metro	Sm ² /mol
			cuadrado por mol	

Anexo A

Nombres y símbolos de los elementos químicos

Número atómico	Nombre	Símbolo
1	hidrógeno	Н
2	helio	He
	110110	110
3	litio	Li
4	berilio	Be
5	boro	В
6	carbono	C
7	nitrógeno	N
8	oxígeno	0
9	flúor	F
10	neón	Ne
10	116011	INC
11	sodio	Na
12		Mg
13	magnesio	Al
	aluminio	
14	silicio	Si
15	fósforo	Р
16	azufre	S
17	cloro	CI
18	argón	Ar
		.,
19	potasio	K
20	calcio	Ca
21	escandio	Sc
22	titanio	Ti
23	vanadio	V
24	cromo	Cr
25	manganeso	Mn
26	hierro	Fe
27	cobalto	Co
28	níquel	Ni
29	cobre	Cu
30	zinc, cinc	Zn
31	galio	Ga
64	gadolinio	Gd
65	terbio	Tb
66	disprosio	Dy
67	holmio	Ho
68	erbio	Er
69	tulio	Tm
70	iterbio	Yb
71	lutecio	Lu
72	hafnio	Hf
73	tántalo, tantalio	Та
74	volframio,	W
	wolframio	
75	renio	Re
76	osmio	Os
77	iridio	Ir
78	platino	Pt
79	oro	Au
80	mercurio	Hg
81	talio	TI
82	plomo	Pb
83	bismuto	Bi
84	polonio	Po
85	ástato	At
86	radón	Rn
87	francio	Fr

Número	Nombre	Símbolo
atómico		
32	germanio	Ge
33	arsénico	As
34	selenio	Se
35 36	bromo	Br
36	criptón	Kr
37	rubidio	Rb
38	estroncio	Sr
39	ytrio	Y
40	circonio	Zr
41	niobio	Nb
42	molibdeno	Мо
43	tecnecio	Tc
44	rutenio	Ru
45	rodio	Rh
46	paladio	Pd
47	plata	Ag
48	cadmio	Cd
49	indio	In
50	estaño	Sn
51	antimonio	Sb
52	teluro, telurio	Te
53	yodo	l
54	xenón	Xe
55	oonio	Cs
56	cesio bario	Ba
57	lantano	La
58	cerio	Ce
59	praseodimio	Pr
60	neodimio	Nd
61	prometio	Pm
62	samario	Sm
63	europio	Eu
88	radio	Ra
89	actinio	Ac
90	torio	Th
91	protactinio	Pa
92	uranio	U
93	neptunio	Np
94	plutonio	Pu
95	americio	Am
96	curio	Cm
97	berquelio	Bk
98	californio	Cf Es
99	einstenio	⊏S
100	fermio	Fm
101	mendelevio	Md
102	nobelio	No
103	lawrencio	Lr
104	unilquadio	Unq
105	unilpentio	Unp
106	unilexhio	Unh
107	unilseptio	Uns
108	uniloctio	Uno
109	unilenio	Une
110	ununilio	Uun
111	unununio	Uuu

Anexo B

Símbolo de los elementos químicos y de los núclidos

[Modificación publicada en el DOF el 24 de septiembre de 2009]

Los símbolos de los elementos químicos deben escribirse en caracteres rectos. El símbolo no va seguido de punto.

Ejemplos: H He C Ca

Los subíndices o superíndices que afectan al símbolo de los nuclidos o moléculas, deben tener los siguientes significados y posiciones:

El número másico de un nuclido se coloca como superíndice izquierdo; por ejemplo:

14N

El número de átomos de un nuclido en una molécula se coloca en la posición del subíndice derecho; por ejemplo:

 $14N_{2}$

El número atómico puede colocarse en la posición de subíndice izquierdo; por ejemplo:

64Gd

Cuando sea necesario, un estado de ionización o un estado excitado puede indicarse mediante un superíndice derecho.

Ejemplos:

Estado de ionización: Na+, PO₄3- o (PO₄)3-

Estado electrónico excitado. He*, NO*

Estado nuclear excitado: 110Ag* o bien 110Agm

Anexo C

pН

El pH se define operacionalmente. Para una disolución X, se mide la fuerza electromotriz E_X de la pila galvánica.

electrodo de referencia | disolución concentrada de KCI | disolución X | H₂ | Pt

y, análogamente, se mide la fuerza electromotriz de una pila galvánica que difiere de la anterior únicamente en la sustitución de la disolución X de pH desconocido, designado por pH(X), por una disolución patrón S, cuyo pH es pH(S). En estas condiciones,

$$pH(X) = pH(S) + (E_S - E_X)F / (RT In 10).$$

El pH así definido carece de dimensiones.

El Manual de la IUPAC sobre los símbolos y la terminología para las magnitudes y unidades de química física (1997) da los valores de pH(S) para varias disoluciones patrón.

El pH no tiene un significado fundamental; su definición es una definición práctica. Sin embargo, en el intervalo restringido de disoluciones acuosas diluidas que tienen concentraciones en cantidad de sustancia inferiores a 0,1 mol/dm³ y no son ni fuertemente ácidas ni fuertemente alcalinas (2 < pH< 12), la definición es tal que,

 $pH = -lg[c(H^+)y_1 / (mol.dm^{-3})] \pm 0.02$

donde $c(H^+)$ indica la concentración en cantidad de sustancia del ion hidrógeno H^+ e y_1 indica el coeficiente de actividad de un electrólito monovalente típico en la disolución.

Tabla 14.- Magnitudes y unidades de física atómica y física nuclear

Magnitud	Símbolo de la magnitud	Definición de la magnitud	Unidad SI	Símbolo de la unidad SI
número atómico, número protónico	Z	Número de protones contenidos en el núcleo de un elemento químico	uno	1
número neutrónico	N	Número de neutrones contenidos en el núcleo de un nuclido	uno	1
número nucleónico número másico	А	Número de nucleones contenidos en el núcleo de un nuclido	uno	1
masa del átomo, masa	m _a , m(X)	Masa en reposo de un átomo en estado fundamental	kilogramo	kg
nuclídica		Para el ¹ H	unidad de masa	u*
		$m(^{1}H) = (1,673 534 0 \pm 0,000 001 0) 10^{-27} kg$	atómica (unificada)	
		= (1,007 825 048 ± 0,000 000 012) u*	(0)	
constante de masa atómica (unificada)	m_{u}	1/12 de la masa en reposo de un átomo neutro del nuclido ¹² C en el estado fundamental		
		$m_u = (1,660 540 2 \pm 0,000 001 0) 10^{-27} \text{ kg}$		
		= 1 u*		
		m _a / m _u = se llama masa nuclídica relativa		
masa (en reposo) del electrón	m _e	$m_e = (9,109\ 381\ 88 \pm 0,000\ 000\ 72) \times 10^{-31} \text{ kg}$	kilogramo	kg
masa (en reposo) del protón	m_p	$m_p = (1,672 621 58 \pm 0,000 000 13) 10^{-27} \text{ kg}$		
masa (en reposo) del neutrón	m _n	$m_n = (1,674 927 16 \pm 0,000 000 13) 10^{-27} \text{ kg}$		
carga elemental	е	La carga eléctrica de un protón es:	coulomb	С
		$e = (1,602\ 176\ 462 \pm 0,000\ 000\ 49)\ 10^{-19} C$		
constante de Plank	h	Cuanto elemental de acción	joule segundo	Js
		$h = (6,626\ 068\ 76 \pm 0,000\ 000\ 52)\ 10^{-34}\ Js$		
		h = h/2		

^{*} Esta unidad no es del SI pero se permite su uso temporalmente.

radio de Bohr	a ₀	$a_0 = \frac{4\pi\epsilon_0 \hbar^2}{m_e e^2}$	metro	m
		$a_0 = (0.529 \ 177 \ 2083 \pm 0.000 \ 000 \ 001924) \ 10^{-10} \ m$		
constante de Rydberg	R_∞	$R_{\infty} = \frac{e^2}{8\pi\epsilon_0 a_0 hc}$ = (10 973 731, 568 549 ± 0,000 083) m ⁻¹	metro recíproco	m ⁻¹
energía de Hartree	E _h	$E_{h} = \frac{e^{2}}{4\pi\epsilon_{0}a_{0}} = 2R_{\infty} \cdot hc$ $= (4,35974381 \pm 0,00000034) \cdot 10^{-18} J$	joule	J
momento magnético de una partícula o núcleo		Valor medio del componente electromagnético en la dirección del campo magnético en el estado cuántico correspondiente al número cuántico magnético máximo	ampere metro cuadrado	Am ²
magnetón de Bohr	В	μ_{B} = eh /2m _e = (9,274 015 4 ± 0,000 003 1) x 10 ⁻²⁴ Am ²		
magnetón nuclear	N	μ_N = eh /2mp = (m _e / m _p) μ_B = (5,050 786 6 ± 0,000 0001 7) x 10 ⁻²⁷ Am ²		
coeficiente giromagnético (razón giromagnética)		$\gamma = \frac{\mu}{Jh}$ en donde J es el número cuántico del momento angular	ampere metro cuadrado por joule segundo	Am ² /(Js)
factor g del átomo o del electrón	g	$\gamma = -g \frac{\mu_B}{h} = -g \frac{e}{2m_e}$	uno	1
factor g del núcleo o de la partícula nuclear	g	$\gamma = g \frac{\mu_N}{h} = g \frac{e}{2m_p}$		
frecuencia angular de Larmor (frecuencia circular de Larmor)	L	$\omega_L = \frac{e}{2m_e} B$	radian por segundo	rad/s
		donde B es la densidad de flujo magnético		

frecuencia angular de precesión nuclear	N	N = B	segundo recíproco	s ⁻¹
frecuencia angular ciclotrónica (frecuencia circular ciclotrónica)	С	$\omega_{\text{C}} = \frac{q}{m}$ donde: $q/m \ \text{es la raz\'on de carga a la masa de la part\'icula}$ B es la densidad de flujo magnético	segundo recíproco	s ⁻¹
momento cuadrupolar nuclear	Q	Valor esperado de la magnitud $(1/e)\!\!\int \left(3z^2-r^2\right)\bullet \rho(x,y,z)\!\!dV$ en el estado cuántico con el espín nuclear en la dirección (z) del campo; (x, y, z) es la densidad de carga nuclear y "e" es la carga elemental	metro cuadrado	m ²
radio nuclear	R	El radio promedio del volumen en el que la materia nuclear es incluida	metro	m
número cuántico de momento angular orbital, número cuántico secundario, número cuántico acimutal	l _i , L		uno	1
número cuántico de espín	s _i , S		uno	1
número cuántico de espín total	j _i , J		uno	
número cuántico de espín nuclear	I		uno	1

número cuántico de estructura hiperfina	F		uno	1
número cuántico principal	n		uno	1
número cuántico magnético	m _i , M		uno	1
radio del electrón	r _e	$r_{e} = \frac{e^{2}}{4 \pi \epsilon_{0} \text{ m}_{e} \text{ c}^{2}}$ $= 2,817 940 92 \pm 0,000 000 38 1 10^{-15} \text{ m}$	metro	m
longitud de onda de Comptón	С	C = 2h / mc = h/mc donde m es la masa en reposo de la partícula	metro	m
exceso de masa		= m _a - Am _u	kilogramo	kg
defecto de masa	В	$B = Zm(^1H) + Nm_n - m_a$		
exceso relativo de masa	r	$r = D/m_u$	uno	1
defecto relativo de masa	Br	$B_r = B/m_u$		
fracción de empaquetamiento	f	f = r /A	uno	1
fracción de enlace, energía de enlace por nucleón	b	$b = B_r /A$		
vida promedio		Para decaimiento exponencial, el tiempo promedio requerido para reducir el número N de átomos o núcleos de un estado específico hasta N/e	segundo	S

ancho de nivel		$\Gamma = \frac{h}{\tau}$	joule	J
actividad (radiactividad)	А	El número promedio de transiciones nucleares espontáneas ocurridas en una cierta cantidad de un radionuclido dentro de un corto intervalo de tiempo, dividido por el valor de ese intervalo	becquerel	Bq
actividad específica en una muestra	а	La actividad de un nuclido radioactivo presente en una muestra, dividida por la masa total de la muestra	becquerel por kilogramo	Bq/kg
constante de desintegración, constante de decaimiento		La constante de decaimiento es la probabilidad de decaimiento en un pequeño intervalo de tiempo dividido por este intervalo. $dN/dt = -\lambda N$ $donde:$ $N \ es \ el \ número \ de \ átomos \ radiactivos \ en \ el \ tiempo \ t$ $= 1/$	segundo recíproco	s ⁻¹
vida media	T _{1/2}	Para declinación exponencial, el tiempo promedio requerido para la desintegración de la mitad de los átomos de una muestra de un nuclido radiactivo	segundo	S
energía de desintegración alfa	${\tt Q}_\alpha$	La suma de la energía cinética de la partícula producida en el proceso de desintegración y la energía residual del átomo producido en el marco de referencia en que el núcleo emisor está en reposo antes de su desintegración	joule	J
energía máxima de partícula beta	E _β	La energía máxima del espectro de energía en un proceso de desintegración beta	joule	J

energía de	Q_{β}	La suma de la energía máxima de partícula beta E_β y la energía residual	joule	J
desintegración beta		del átomo producido en el marco de referencia en que el núcleo emisor		
		se encuentra en reposo antes de su desintegración		

Tabla 15.- Magnitudes y unidades de reacciones nucleares y reacciones ionizantes

Magnitud	Símbolo de la magnitud	Definición de la magnitud	Unidad SI	Símbolo de la unidad SI
energía de reacción	Q	En una reacción nuclear, la suma de las energías cinética y radiante de los productos de la reacción, menos la suma de las energías cinética y radiante de los reactivos.	joule	٦
energía de resonancia	E _r , E _{res}	La energía cinética de una partícula incidente, en el marco de la referencia del objetivo, correspondiente a una resonancia en una reacción nuclear	joule	J
sección transversal		Para una entidad objetivo especificada y para una reacción o proceso especificado por partículas incidentes cargadas o descargadas de energía y tipo especificado, la sección transversal es el cociente de la probabilidad de esta reacción o proceso para esta entidad objetivo y la fluencia de partícula de las partículas incidentes	metro cuadrado	m ²
sección transversal total	$\sigma_{ ext{tot}}$, $\sigma_{ ext{T}}$	La suma de todas las secciones transversales correspondientes a las diversas reacciones o procesos ocurridos entre la partícula incidente y la partícula objetivo		
sección transversal angular	Ω	Sección transversal necesaria para disparar o dispersar una partícula dentro de un elemento de ángulo sólido, dividido por dicho elemento $= {}_{\Omega} \text{d}_{\Omega}$	metro cuadrado por esterradián	m ² /sr
sección transversal espectral	E	Sección transversal para un proceso en el que la energía de la partícula disparada o dispersada está en un elemento de energía, dividida por ese elemento = EdE	metro cuadrado por joule	m²/J
sección transversal angular espectral	Ω,Ε	Sección transversal necesaria para disparar o dispersar una partícula dentro de un elemento de ángulo sólido, con energía en un elemento de energía, dividida por el producto de estos dos elementos $= \Omega_{,E} \ d\Omega \ dE$	metro cuadrado por esterradián joule	m ² /(srJ)

sección transversal macroscópica, densidad de sección transversal		La suma de las secciones transversales de una reacción o proceso de un tipo específico, para todos los átomos de un volumen dado, dividida por ese volumen	metro recíproco	m ⁻¹
sección transversal macroscópica total, densidad de sección transversal total	tot, T	La suma total de las secciones transversales para todos los átomos en un volumen dado, dividido por ese volumen		
fluencia de partícula		En un punto dado del espacio, el número de partículas incidentes sobre una pequeña esfera en un intervalo de tiempo, dividido por el área de la sección transversal de esa esfera	metro cuadrado recíproco	m ⁻²
tasa de fluencia de partículas, densidad de flujo de partículas		$\varphi = \frac{d \phi}{dt}$	metro cuadrado recíproco por segundo	m ⁻² /s
fluencia de energía		En un punto dado en el espacio, la suma de las energías, excluyendo la energía en reposo, de todas las partículas incidentes sobre una pequeña esfera en un intervalo de tiempo, dividida por el área seccional transversal de esa esfera	joule por metro cuadrado	J/m ²
tasa de fluencia de energía, densidad de flujo de energía		$\psi = \frac{d \psi}{dt}$	watt por metro cuadrado	W/m ²
densidad de corriente de partículas	J, (S)	La integral de una magnitud vectorial cuya componente normal sobre cualquier superficie, es igual al número "neto" de partículas pasando a través de esa superficie en un pequeño intervalo de tiempo, dividido por ese intervalo	metro cuadrado recíproco por segundo	m ⁻² /s
coeficiente de atenuación lineal	μ, μι	$\mu \ = \ -(\frac{1}{J}) \frac{dJ}{dx}$ donde J es la densidad de corriente de un haz de partículas paralelo a la dirección x	metro recíproco	m ⁻¹

coeficiente de atenuación másica	m	El coeficiente de atenuación lineal dividido por la densidad de masa de la sustancia	metro cuadrado por kilogramo	m²/kg
coeficiente de atenuación molar	С	c = /c donde c es la concentración de cantidad de sustancia	metro cuadrado por mol	m²/mol
coeficiente de atenuación atómica	a, at	a = /n donde n es la densidad numérica de átomos en la sustancia	metro cuadrado	m ²
espesor medio, valor medio de espesor, capa hemirreductora	d _½	El espesor de la capa atenuadora que reduce la densidad de corriente de un haz unidireccional a la mitad de su valor inicial	metro	m
potencia de detención lineal total, poder de frenado lineal total	S, S ₁	Para una partícula cargada ionizante de energía E, moviéndose en la dirección x S = - dE/dx	joule por metro	J/m
potencia de detención atómica total, poder de frenado atómico total	Sa	S _a = S/n donde n es la densidad numérica de átomos en la sustancia	joule metro cuadrado	Jm ²
potencia de detención másica total, poder frenado másico total	S _m	La potencia de detención lineal total dividida por la densidad de masa de la sustancia	joule metro cuadrado por kilogramo	Jm²/kg
alcance lineal medio	R, R _I	La distancia que una partícula penetra en una sustancia dada, bajo condiciones específicas promediadas de un grupo de partículas que tiene la misma energía	metro	m
alcance másico medio	R_{ρ} , (R_{m})	El alcance lineal medio multiplicado por la densidad de masa de la sustancia	kilogramo por metro cuadrado	kg/m ²
ionización lineal por una partícula	N _{il}	El número de cargas elementales del mismo signo, producidas en un elemento de la longitud de la trayectoria de una partícula cargada ionizante dividido por ese elemento	metro recíproco	m ⁻¹

pérdida promedio de energía por par de iones formados	W _j	La energía cinética inicial de una partícula cargada ionizante, dividida por la ionización total de esa partícula	joule	J
movilidad		La velocidad de arrastre promedio impartida por un campo eléctrico o una partícula cargada en un medio, dividido por la intensidad del campo	metro cuadrado por volt segundo	m ² /(Vs)
densidad numérica de iones, densidad de iones	n+, n ⁻	El número de iones positivos o negativos de un elemento de volumen, dividido por ese elemento	metro cúbico recíproco	m ⁻³
coeficiente de recombinación		Coeficiente en la Ley de recombinación $-\frac{dn^{+}}{dx} = -\frac{dn^{-}}{dt} = \alpha n^{+} n^{-}$	metro cúbico por segundo	m ³ /s
densidad numérica de neutrones	n	El número de neutrones libres en un elemento de volumen, dividido por ese elemento	metro cúbico recíproco	m ⁻³
rapidez del neutrón	V	La magnitud de la velocidad neutrónica	metro por segundo	m/s
densidad de flujo de neutrones, rapidez de flujo de neutrones		En un punto dado en el espacio, el número de neutrones incidentes sobre una pequeña esfera, en un pequeño intervalo de tiempo, dividido por el área de sección transversal de esa esfera y por el intervalo de tiempo	metro cuadrado recíproco por segundo	m ⁻² /s
coeficiente de difusión, coeficiente de difusión para la densidad numérica de neutrones	D, D _n	$J_X = -D_n n/x$ donde: $J_X \ es \ la \ componente \ x \ de \ la \ densidad \ de \ corriente \ de \ neutrones$ n es la densidad numérica de neutrones	metro cuadrado por segundo	m ² /s
coeficiente de difusión para la densidad de flujo de neutrones, coeficiente de difusión para rapidez de fluencia de neutrones	D, (D)	J_X = -D/x donde: J_X es la componente x de la densidad de corriente neutrónica es la densidad de flujo neutrónico	metro	m

densidad total de una fuente de neutrones	S	Razón de la producción de neutrones en un elemento de volumen, dividido por ese elemento	segundo recíproco metro cúbico recíproco	s ⁻¹ m ⁻³
densidad de frenado	q	La densidad numérica de neutrones retardados, pasando un valor de energía dado, durante un corto intervalo de tiempo, dividida por dicho intervalo	metro cúbico recíproco por segundo	m ⁻³ /s
probabilidad de escape a la resonancia	р	En medio infinito, probabilidad de que un neutrón, al frenarse a través de una zona energética donde existen resonancias, la rebase sin ser absorbido	uno	1
letargía	u	En el frenado de neutrones, logaritmo neperiano del cociente entre una energía de referencia E_0 , normalmente la máxima del neutrón, y la que este posee, E	uno	1
decaimiento logarítmico medio		Valor medio de la disminución del logaritmo neperiano de la energía de los neutrones en sus condiciones elásticas con núcleos cuya energía cinética es despreciable comparada con la de los neutrones	uno	1
trayectoria libre promedio	I,	La distancia promedio que viaja una partícula entre dos reacciones o procesos específicos sucesivos	metro	m
área de retardamiento	L ² _s , L ² _{sl}	En un medio homogéneo infinito, la sexta parte de la distancia cuadrática media entre la fuente de un neutrón y el punto donde el neutrón alcanza una energía determinada	metro cuadrado	m ²
área de difusión	L ²	En un medio homogéneo infinito, la sexta parte de la distancia cuadrática media entre el punto donde el neutrón entra a una clase especificada y el punto donde abandona esta clase		
área de migración	M ²	La suma del área de retardamiento de energía de fisión a energía térmica y el área de difusión para neutrones térmicos		
longitud de retardamiento	L _s , L _{sl}	La raíz cuadrada del área de retardamiento	metro	m
longitud de difusión	L	La raíz cuadrada del área de difusión		

longitud de migración	M	La raíz cuadrada del área de migración		
rendimiento neutrónico de la fisión	V	En la fisión de un núclido determinado, promedio del número de neutrones, lo mismo inmediatos que diferidos, emitidos en cada fisión	uno	1
rendimiento neutrónico de la absorción		Promedio del número de neutrones de fisión, lo mismo inmediatos que diferidos, emitido por cada neutrón que se absorbe en un nuclido fisionable o en un combustible nuclear, según se especifique		
factor de fisión rápida		Para un medio infinito, razón entre el número medio de neutrones producidos por todas las fisiones y el de neutrones producidos exclusivamente por las fisiones térmicas	uno	1
factor de utilización térmica	f	Para un medio infinito, razón entre el número de neutrones térmicos absorbidos en un combustible nuclear, según se especifique, y el número total de neutrones térmicos absorbidos	uno	1
probabilidad de permanencia		Probabilidad de que un neutrón no escape del núcleo de un reactor durante el proceso de moderación o el de difusión en la zona térmica	uno	1
factor de multiplicación	k	Para un medio multiplicativo, razón entre el número total de neutrones producidos durante un intervalo de tiempo y el número total de neutrones perdidos por absorción y escape durante el mismo intervalo	uno	1
factor de multiplicación infinito, factor de multiplicación de un medio infinito	k_∞	Factor de multiplicación de un medio sin fugas neutrónicas		
factor de multiplicación efectivo	k _{eff}	Factor de multiplicación correspondiente a un medio finito		
reactividad		En un medio multiplicativo, medida de la desviación entre el estado del medio y su estado crítico $ \rho = \frac{k_{eff} - 1}{k_{eff}} $	uno	1

constante de tiempo del reactor	Т	El tiempo requerido para que la densidad de flujo neutrónico de un reactor cambie en un factor "e" cuando la densidad de flujo aumenta o disminuye exponencialmente	segundo	s
actividad	А	El número promedio de transacciones nucleares espontáneas ocurridas en una cierta cantidad de un radionuclido, dentro de un corto intervalo de tiempo, dividido por el valor de ese intervalo	becquerel	Bq
energía impartida		La energía impartida por radiación ionizante a la materia en un volumen, es, la diferencia entre la suma de las energías de todas las partículas directamente ionizantes (cargadas) e indirectamente ionizantes (sin carga) que han ocupado el volumen y la suma de las energías de todas aquellas que han salido de él, menos la energía equivalente de cualquier incremento de la masa en reposo que tenga lugar en reacciones de partículas elementales o nucleares	joule	J
energía impartida media	3	El promedio de la energía impartida	joule	J
energía específica impartida	Z	Para cualquier radiación ionizante la energía impartida a un elemento de materia irradiada, dividida por la masa de ese elemento	gray	Gy
dosis absorbida	D	Para cualquier radiación ionizante, la energía media impartida a un elemento de materia irradiada, dividida por la masa de este elemento		
equivalente de dosis	Н	El equivalente de dosis es el producto de D, Q, y N en el punto de interés, donde D es la dosis absorbida, Q es el factor de calidad y la N es el producto de otros factores determinantes cualesquiera H = DQN	sievert	Sv
rapidez de dosis absorbida	Ď	Dosis absorbida en un pequeño intervalo de tiempo, dividida por este intervalo	gray por segundo	Gy/s
transferencia lineal de energía	L	Para una partícula cargada ionizante, la energía local impartida a una masa, a través de una pequeña distancia, dividida por esa distancia	Joule por metro	J/m
kerma	К	Para partículas indirectamente ionizantes (sin carga), la suma de las energías cinéticas iniciales de todas las partículas cargadas liberadas en un elemento de materia, dividida por la masa de ese elemento kerma en un pequeño intervalo de tiempo, dividido por ese intervalo	gray	Gy

rapidez de kerma	ĸ	$\dot{K} = \frac{dK}{dt}$	gray por segundo	Gy/s
coeficiente de transferencia de energía másica	tr [/]	Para un haz de partículas indirectamente ionizante (sin cargas) $\mu_{tr} \ / \ \rho \ = \ \frac{\dot{K}}{\psi}$ donde es la densidad de flujo de energía	metro cuadrado por kilogramo	m ² /kg
exposición	Х	Para radiación X o gamma, la carga eléctrica total de los iones del mismo signo producidos cuando todos los electrones liberados (negativos y positivos) por fotones en un elemento de aire son detenidos en el aire, dividida por la masa de ese elemento	coulomb por kilogramo	C/kg
rapidez de exposición	Х	Exposición en un pequeño intervalo de tiempo, dividida entre ese intervalo	coulomb por kilogramo segundo	C/(kgs)

| | PRECIO |
|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
| CLAVE | PROMEDIO |

TABLA 16.- Unidades que no pertenecen al SI, que se conservan para usarse con el SI

Magnitud	Unidad	Símbolo	Equivalente
tiempo	minuto	min	1 min = 60 s
	hora	h	1 h = 60 min = 3 600 s
	día	d	1 d =24 h = 86 400 s
	año	а	1 a = 365,242 20 d = 31 556 926 s
ángulo	grado	٥	1° = (/180) rad
	minuto	1	1' = (/10 800) rad
	segundo	"	1" = (/648 000) rad
volumen	litro	I, L	$1 L = 10^{-3} m^3$
masa	tonelada	t	$1 t = 10^3 kg$
trabajo, energía	electronvolt	eV	1 eV = 1,602 177 x 10 ⁻¹⁹ J
masa	unidad de masa atómica	u	1 u = 1,660 540 x 10 ⁻²⁷ kg

Tabla 17.- Unidades que no pertenecen al SI que pueden usarse temporalmente con el SI

Magnitud	Unidad	Símbolo	Equivalencia
	área	а	$1 a = 10^2 m^2$
superficie	hectárea	ha	1 ha = 10^4 m^2
	barn	b	$1 b = 10^{-28} m^2$
longitud	angströn	Å	1 Å = x 10 ⁻¹⁰ m
longitud	milla náutica		1 milla náutica = 1852 m
presión	bar	bar	1 bar = 100 kPa
velocidad	nudo		1 nudo = (0,514 44) m/s
dosis de radiación	röntgen	R	1 R =2,58 x 10 ⁻⁴ C/kg
dosis absorbida	rad*	rad (rd)	1 rad = 10 ⁻² Gy
radiactividad	curie	Ci	1 Ci = 3,7 x 10 ¹⁰ Bq
aceleración	gal	Gal	1 gal = 10^{-2} m/s ²
dosis equivalente	rem	rem	1 rem = 10 ⁻² Sv

^{*} El rad es una unidad especial empleada para expresar dosis absorbida de radiaciones ionizantes. Cuando haya riesgo de confusión con el símbolo del radián, se puede emplear rd como símbolo del rad.

Tabla 18.- Ejemplos de unidades que no deben utilizarse

Magnitud	Unidad	Símbolo	Equivalencia
longitud	fermi	fm	10 ⁻¹⁵ m

PRECIO PRECIC LAVE PROMEDIO CLAVE PROMEDI		PRECIO E PROMEDIO	PRECIO CLAVE PROMEDIO CLAVE	PRECIO
longitud	unidad X	unidad X	1,002 x 10 ⁻⁴ nm	
volumen	stere	st	1 m ³	
masa	quilate métrico	СМ	2 x 10 ⁻⁴ kg	
fuerza	kilogramo-fuerza	kgf	9,806 65 N	
presión	torr	Torr	133,322 Pa	
energía	caloría	cal	4,186 8 J	
fuerza	dina	dyn	10 ⁻⁵ N	
energía	erg	erg	10 ⁻⁷ J	
luminancia	stilb	sb	10 ⁴ cd/m ²	
viscosidad dinámica	poise	Р	0,1 Pas	
viscosidad cinemática	stokes	St	10 ⁻⁴ m ² /s	
luminosidad	phot	ph	10 ⁴ lx	
inducción	gauss	Gs, G	10 ⁻⁴ T	
intensidad campo magnético	oersted	Oe	(1000 / 4) A/m	
flujo magnético	maxwell	Mx	10 ⁻⁸ Wb	
inducción	gamma		10 ⁻⁹ T	
masa	gamma		10 ⁻⁹ kg	
volumen	lambda		10 ⁻⁹ m ³	

Tabla 19.- Prefijos para formar múltiplos y submúltiplos

Nombre	Símbolo		Valor	
yotta	Y	10 ²⁴ =	1 000 000 000 000 000 000 000 000	
zetta	Z	10 ²¹ =	1 000 000 000 000 000 000 000	
exa	E	10 ¹⁸ =	1 000 000 000 000 000 000	
peta	Р	10 ¹⁵ =	1 000 000 000 000 000	
tera	Т	10 ¹² =	1 000 000 000 000	
giga	G	10 ⁹ =	1 000 000 000	
mega	М	10 ⁶ =	1 000 000	
kilo	k	10 ³ =	1 000	
hecto	h	102 =	100	
deca	da	10 ¹ =	10	
deci	d	10 ⁻¹ =	0,1	
centi	С	10 ⁻² =	0,01	
mili	m	10-3 =	0,001	
micro	μ	10 ⁻⁶ =	0,000 001	

CLAVE	PRECIO PROMEDIO) CLAVE	PRECIO PROMEDIO	CLAVE	PRECIO PROMEDIO	CLAVE	PRECIO PROMEDIO	CLAVE	PRECIO PROMEDIO	CLAVE	PRECIO PROMEDIO
	nano	n	10 ⁻⁹ =				0,0	000 000 0	01		·
	pico	р	10-12 =				0,0	000 000 0	000 001		
1	femto	f	10-15 =	0,000 000 000 000 001							
	atto	а	10-18 =	0,000 000 000 000 000 001							
:	zepto	z	10 ⁻²¹ =				0,0	000 000 0	000 000 000	000 001	
	yocto	у	10-24 =				0,0	000 000 0	000 000 000	000 000 0	001

| | PRECIO |
|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
| CLAVE | PROMEDIO |

Tabla 20.- Reglas generales para la escritura de los símbolos de las unidades del SI

1.- Los símbolos de las unidades deben ser expresados en caracteres romanos, en general, minúsculas, con excepción de los símbolos que se derivan de nombres propios, en los cuales se utilizan caracteres romanos en mayúsculas

Ejemplos: m, cd, K, A

- 2.- No se debe colocar punto después del símbolo de la unidad
- 3.- Los símbolos de las unidades no deben pluralizarse

Ejemplos: 8 kg, 50 kg, 9 m, 5 m

4.- El signo de multiplicación para indicar el producto de dos o más unidades debe ser de preferencia un punto. Este punto puede suprimirse cuando la falta de separación de los símbolos de las unidades que intervengan en el producto, no se preste a confusión.

Ejemplo: Nm o Nm, también mN pero no: mN que se confunde con milinewton,

submúltiplo de la unidad de fuerza, con la unidad de momento de una

fuerza o de un par (newton metro)

5.- Cuando una unidad derivada se forma por el cociente de dos unidades, se puede utilizar una línea inclinada, una línea horizontal o bien potencias negativas.

Ejemplo: m/s o ms⁻¹ para designar la unidad de velocidad: metro por segundo

6.- No debe utilizarse más de una línea inclinada a menos que se agreguen paréntesis. En los casos complicados, deben utilizarse potencias negativas o paréntesis

Ejemplos: m/s² o ms⁻², pero no: m/s/s

mkg / (s³A) o mkgs⁻³A⁻¹, pero no: mkg/s³/A

7.- Los múltiplos y submúltiplos de las unidades se forman anteponiendo al nombre de éstas, los prefijos correspondientes con excepción de los nombres de los múltiplos y submúltiplos de la unidad de masa en los cuales los prefijos se anteponen a la palabra "gramo"

Ejemplo: dag, Mg (decagramo; megagramo)

ks, dm (kilosegundo; decímetro)

 Los símbolos de los prefijos deben ser impresos en caracteres romanos (rectos), sin espacio entre el símbolo del prefijo y el símbolo de la unidad

Ejemplo: mN (milinewton) y no: m N

9.- Si un símbolo que contiene a un prefijo está afectado de un exponente, indica que el múltiplo de la unidad está elevado a la potencia expresada por el exponente

Ejemplo:1 cm³ =
$$(10^{-2} \text{ m})^3 = 10^{-6} \text{ m}^3$$

$$1 \text{ cm}^{-1} = (10^{-2} \text{ m})^{-1} = 10^{2} \text{ m}^{-1}$$

10.- Los prefijos compuestos deben evitarse

Ejemplo:1 nm (un nanómetro)

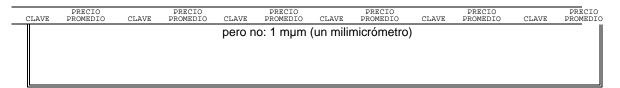


Tabla 21.- Reglas para la escritura de los números y su signo decimal

Números	Los números deben ser generalmente impresos en tipo romano. Para facilitar la lectura de números con varios dígitos, éstos deben ser separados en grupos apropiados preferentemente de tres, contando del signo decimal a la derecha y a la izquierda, los grupos deben ser separados por un pequeño espacio, nunca con una coma, un punto, o por otro medio.
Signo decimal	El signo decimal debe ser una coma sobre la línea (,) o un punto sobre la línea (.). Si la magnitud de un número es menor que la unidad, el signo decimal debe ser precedido por un cero. [Modificación publicada en el DOF el 24 de septiembre de 2009]

9. Vigilancia

La vigilancia de la presente Norma Oficial Mexicana estará a cargo de la Secretaría de Economía, por conducto de la Dirección General de Normas y de la Procuraduría Federal del Consumidor, conforme a sus respectivas atribuciones.

10. Bibliografía

- Ley Federal sobre Metrología y Normalización, publicada en el **Diario Oficial de la Federación** el 1 de julio de 1992.
- Reglamento de la Ley Federal sobre Metrología y Normalización, publicado en el **Diario Oficial** de la Federación el 14 de enero de 1999.
- Le Systeme International d'Unités (SI)

Bureau International des Poids et Mesures.

- Recueil de Travaux du Bureau International des Poids et Mesures

Volumen 2, 1968-1970.

Bureau International des Poids et Mesures.

- ISO 1000 (1992)	SI units and recommendations for the use of their multiples and of certain other units.
- ISO 31-0 (1992)	Quantities and units-Part 0: General principles.
- ISO 31-1 (1992)	Quantities and units-Part 1: Space and time.
- ISO 31-2 (1992)	Quantities and units-Part 2: Periodic and related phenomens.
- ISO 31-3 (1992)	Quantities and units-Part 3: Mechanics.
- ISO 31-4 (1978)	Quantities and units-Part 4: Heat.
- ISO 31-5 (1992)	Quantities and units-Part 5: Electricity and magnetism.
- ISO 31-6 (1992)	Quantities and units-Part 6: Light and related electromagnetic radiations.

CLAVE	PRECIO PROMEDIO	CLAVE	PRECIO PROMEDIO	CLAVE	PRECIO PROMEDIO	CLAVE	PRECIO PROMEDIO	CLAVE	PRECIO PROMEDIO	CLAVE	PRECIO PROMEDIO
- ISO 31-7 (1992) Quantities and units-Part 7: Acoustics.											
- ISO 31-8 (1992)		2) (Quantities and units-Part 8: Physical chemistry and molecular physics.								
- ISO 31-9 (1992)		2) (Quantities and units-Part 9: Atomic and nuclear physics.								
- ISO 31-10-1992			Quantities and units-Part 10: Nuclear reactions and ionizing radiations.								
- NFXO2-201-1985 Grandeurs, unites et symboles d'espace							ce et de te	mps.			
- NF	XO2-202-19	85 (Grandeurs, unités et symboles de phénoménes periodiques et connexes.								
- NF	XO2-203-19	93 (Grandeurs,	unités e	t symboles	s de mé	canique.				
- NF	XO2-204-19	93 (Grandeurs,	unités e	t symbole:	s de the	rmique.				
- NFXO2-205-1994			Grandeurs, unités et symboles d'electicité et de magnétisme.								
- NF	XO2-206-19		Grandeurs, d'optique.	unités	et symbo	oles de	s rayonne	ments e	electro ma	gnétique	s et
- NF	XO2-207-19	85 (Grandeurs,	unités e	t symboles	s d'acou	stique.				
- NF	XO2-208-19	85 (Grandeurs,	unités e	t symboles	s de chi	mie physiqu	ue et de	physique m	noléculai	re.
- NF	XO2-209-19	93 (Grandeurs,	unités e	t symboles	s de phy	usique ato	mique et	nucleaire.		

- Atomic Weigths of the Elements 1997

IUPAC Pure Appl. Chem., 51, 381-384 (1997)

11. Concordancia con normas internacionales

Esta Norma concuerda con lo establecido en los documentos del Bureau International des Poids et Mesures y las normas ISO mencionadas en la bibliografía. Las tablas se han estructurado eligiendo las unidades más usuales.

TRANSITORIOS

PRIMERO.- Esta Norma Oficial Mexicana entrará en vigor 60 días naturales después de su publicación en el **Diario Oficial de la Federación**.

SEGUNDO.- Esta Norma Oficial Mexicana cancela a la NOM-008-SCFI-1993, Sistema General de Unidades de Medida.

México, D.F., a 24 de octubre de 2002.- El Director General de Normas, **Miguel Aguilar Romo**.- Rúbrica.